28 resultados para Transport Systems and Logistics
Resumo:
This work explores the design of piezoelectric transducers based on functional material gradation, here named functionally graded piezoelectric transducer (FGPT). Depending on the applications, FGPTs must achieve several goals, which are essentially related to the transducer resonance frequency, vibration modes, and excitation strength at specific resonance frequencies. Several approaches can be used to achieve these goals; however, this work focuses on finding the optimal material gradation of FGPTs by means of topology optimization. Three objective functions are proposed: (i) to obtain the FGPT optimal material gradation for maximizing specified resonance frequencies; (ii) to design piezoelectric resonators, thus, the optimal material gradation is found for achieving desirable eigenvalues and eigenmodes; and (iii) to find the optimal material distribution of FGPTs, which maximizes specified excitation strength. To track the desirable vibration mode, a mode-tracking method utilizing the `modal assurance criterion` is applied. The continuous change of piezoelectric, dielectric, and elastic properties is achieved by using the graded finite element concept. The optimization algorithm is constructed based on sequential linear programming, and the concept of continuum approximation of material distribution. To illustrate the method, 2D FGPTs are designed for each objective function. In addition, the FGPT performance is compared with the non-FGPT one.
Resumo:
Several aspects of photoperception and light signal transduction have been elucidated by studies with model plants. However, the information available for economically important crops, such as Fabaceae species, is scarce. In order to incorporate the existing genomic tools into a strategy to advance soybean research, we have investigated publicly available expressed sequence tag ( EST) sequence databases in order to identify Glycine max sequences related to genes involved in light-regulated developmental control in model plants. Approximately 38,000 sequences from open-access databases were investigated, and all bona fide and putative photoreceptor gene families were found in soybean sequence databases. We have identified G. max orthologs for several families of transcriptional regulators and cytoplasmic proteins mediating photoreceptor-induced responses, although some important Arabidopsis phytochrome-signaling components are absent. Moreover, soybean and Arabidopsis gene-family homologs appear to have undergone a distinct expansion process in some cases. We propose a working model of light perception, signal transduction and response-eliciting in G. max, based on the identified key components from Arabidopsis. These results demonstrate the power of comparative genomics between model systems and crop species to elucidate several aspects of plant physiology and metabolism.
Resumo:
Aeration and agitation are important variables to ensure effective oxygen transfer rate during aerobic bioprocesses: therefore, the knowledge of the volumetric mass transfer coefficient (k(L)a) is required. In view of selecting the optimum oxygen requirements for extractive fermentation in aqueous two-phase system (ATPS), the k(L)a values in a typical ATPS medium were compared in this work with those in distilled water and in a simple fermentation medium. in the absence of biomass. Aeration and agitation were selected as the independent variables using a 2(2) full factorial design. Both variables showed statistically significant effects on k(L)a, and the highest values of this parameter in both media for simple fermentation (241 s(-1)) and extractive fermentation with ATPS (70.3 s(-1)) were observed at the highest levels of aeration (5 vvm) and agitation (1200 rpm). The k(L)a values were then used to establish mathematical correlations of this response as a function of the process variables. The exponents of the power number (N(3)D(2)) and superficial gas velocity (V(s)) determined in distilled water (alpha = 0.39 and beta = 0.47, respectively) were in reasonable agreement with the ones reported in the literature for several aqueous systems and close to those determined for a simple fermentation medium (alpha=0.38 and beta=0.41). On the other hand, as expected by the increased viscosity in the presence of polyethylene glycol, their values were remarkably higher in a typical medium for extractive fermentation (alpha=0.50 and beta=1.0). A reasonable agreement was found between the experimental data of k(L)a for the three selected systems and the values predicted by the theoretical models, under a wide range of operational conditions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Minimally processed refrigerated ready-to-eat fishes may offer health risk of severe infection to susceptible individuals due to contamination by the psychrotolerant bacterium L monocytogenes. In this work, inhibition of L monocytogenes by a plant extract and lactic acid bacteria (IAB) was studied in model fish systems kept at 5 degrees C for 35 days. For that, fillets of tropical fish ""surubim"" (Pseudoplatystoma sp.) and hydroalcoholic extract of the plant Lippia sidoides Cham. (""alecrim pimenta"") were used. Fish peptone broth (FPB), ""surubim"" broth and ""surubim"" homogenate were inoculated with combinations of L monocytogenes and bacteriocin-producing Carnobacterium maltaromaticum (C2 and A9b(+)) and non bacteriocin-producing C. maltaromaticum (A9b(-)), in the presence or absence of extract of ""alecrim pimenta"" (EAP). In all model systems, monocultures of L monocytogenes and carnobacteria reached final populations >= 10(8) CFU/ml after 35 days, except for L monocytogenes in ""surubim"" homogenate (10(4) CFU/ml). In FPB, EAP alone and combined with cultures of LAB inhibited L monocytogenes but carnobacteria without EAP were only weakly antilisterial. In ""surubim"" broth, EAP alone did not prevent L monocytogenes growth but cultures of carnobacteria combined or not with EAP inhibited L monocytogenes, with more pronounced effect being observed for C maltaromaticum C2, which produced bacteriocin. In ""surubim"" homogenate, EAP alone and combined with cultures of C. maltaromaticum A9b(-) and A9b(+) were strongly inhibitory to L monocytogenes, while C maltaromaticum C2 with EAP caused transient inhibition of L monocytogenes. No significant inhibition of L monocytogenes was observed for carnobacteria in ""surubim"" homogenate without EAP. In conclusion, it was observed that the use of EAP and cultures of carnobacteria have potential to inhibit L monocytogenes in fish systems and the applications should be carefully studied, considering the influence of food matrix. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
Background: The Flutter (R) VRP1 combines high frequency oscillation and positive expiratory pressure (PEP). Objective: To separately evaluate the effect of the Flutter (R) VRP1 components (high frequency oscillation and PEP) on mucus transportability in patients with bronchiectasis. Methods: Eighteen patients with bronchiectasis received sessions with the Flutter (R) VRP1 or PEP for 30 min daily in a randomized, crossover study. The treatment duration was four weeks with one of the therapies, one week of a ""wash-out"" period and followed by four more weeks with the other treatment. Weekly secretion samples were collected and evaluated for mucociliary relative transport velocity (RTV), displacement in a simulated cough machine (SCM) and contact angle measurement (CAM). For the proposed comparisons, a linear regression model was used with mixed effects with a significance level of 5%. Results: The Flutter (R) VRP1 treatment resulted in greater displacement in SCM and lower CAM when comparing results from the first (9.6 +/- 3.4 cm and 29.4 +/- 5.7 degrees, respectively) and fourth weeks of treatment (12.44 +/- 10.5 cm and 23.28 +/- 6.2, respectively; p < 0.05). There was no significant difference in the RTV between the treatment weeks for either the Flutter (R) VRP1 or PEP. Conclusion: The use of the Flutter (R) VRP1 for four weeks is capable of altering the respiratory secretion transport properties, and this alteration is related to the high frequency oscillation component. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this work, we take advantage of association rule mining to support two types of medical systems: the Content-based Image Retrieval (CBIR) systems and the Computer-Aided Diagnosis (CAD) systems. For content-based retrieval, association rules are employed to reduce the dimensionality of the feature vectors that represent the images and to improve the precision of the similarity queries. We refer to the association rule-based method to improve CBIR systems proposed here as Feature selection through Association Rules (FAR). To improve CAD systems, we propose the Image Diagnosis Enhancement through Association rules (IDEA) method. Association rules are employed to suggest a second opinion to the radiologist or a preliminary diagnosis of a new image. A second opinion automatically obtained can either accelerate the process of diagnosing or to strengthen a hypothesis, increasing the probability of a prescribed treatment be successful. Two new algorithms are proposed to support the IDEA method: to pre-process low-level features and to propose a preliminary diagnosis based on association rules. We performed several experiments to validate the proposed methods. The results indicate that association rules can be successfully applied to improve CBIR and CAD systems, empowering the arsenal of techniques to support medical image analysis in medical systems. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Magnesium may influence blood pressure by modulating vascular tone and structure through its effects on myriad biochemical reactions that control vascular contraction/dilation, growth/apoptosis, differentiation and inflammation. Magnesium acts as a calcium channel antagonist, it stimulates production of vasodilator prostacyclins and nitric oxide and it alters vascular responses to vasoconstrictor agents. Mammalian cells regulate Mg(2+) concentration through special transport systems that have only recently been characterized. Magnesium efflux occurs via Na(2+)-dependent and Na(2+)-independent pathways. Mg(2+) influx is controlled by recently cloned transporters including Mrs2p, SLC41A1, SLC41A2, ACDP2, MagT1, TRPM6 and TRPM7. Alterations in some of these systems may contribute to hypomagnesemia and intracellular Mg(2+) deficiency in hypertension and other cardiovascular pathologies. In particular, increased Mg(2+) efflux through dysregulation of the vascular Na(+)/Mg(2+) exchanger and decreased Mg(2+) influx due to defective vascular and renal TRPM6/7 expression/activity may be important in altered vasomotor tone and consequently in blood pressure regulation. The present review discusses the role of Mg(2+) in vascular biology and implications in hypertension and focuses on the putative transport systems that control magnesium homeostasis in the vascular system. Much research is still needed to clarify the exact mechanisms of cardiovascular Mg(2+) regulation and the implications of aberrant cellular Mg(2+) transport and altered cation status in the pathogenesis of hypertension and other cardiovascular diseases.
Resumo:
Purpose: To evaluate the effects of storage condition and duration on the resistance to fracture of different fiber post systems (and to morphologically assess the post structure before and after storage. Methods: Three types of fiber posts (DT Light Post, GC Post, FRC Postect Plus) were divided in different groups (n=12) according to the storage condition (dry at 37 degrees C; saline water at 37 degrees C; mineral oil at 37 degrees C and storage inside the roots of extracted human teeth immersed in saline water at 37 degrees C and duration (6, 12 months). A universal testing machine loading at a 90 degrees angle was employed for the three-point bending test. The test was carried out until fracture of the post. A 3-way ANOVA and Tukey`s test (alpha= 0.05) were used to compare the effect of the experimental factors on the fracture strength. Two posts of each group were observed before and after the storage using a scanning electron microscope. Results: Storage condition and post type had a significant effect on post fracture strength (P< 0.05). The interaction between these factors was significant (P< 0.05). Water storage significantly decreased the fracture strength, regardless of the post type and the storage duration. Storage inside roots, in oil, and at dry conditions did not significantly affect post fracture strength. SEM micrographs revealed voids between fibers and resin matrix for posts stored in water. Posts stored under the other conditions showed a compact matrix without porosities. (Am J Dent 2009;22:366-370).
Resumo:
Background Several studies have reported certain bone morphogenic proteins (BMPs) to have positive effects on bone generation Although some investigators have studied the effects of human recombinant BMP (rhBMP-2) in sinus augmentation in sheep, none of these studies looked at the placement of implants at the time of sinus augmentation Furthermore, no literature could be found to report on the impact that different implant systems, as well as the positioning of the implants had on bone formation if rhBMP-2 was utilized in sinus-lift procedures Purpose The aim of this study was to compare sinus augmentation with rhBMP-2 on a poly-D, L-lactic-co-glycolic acid gelatine (PLPG) sponge with sinus augmentation with autologous pelvic cancellous bone in the maxillary sinus during the placement of different dental Implants Materials and methods Nine adult female sheep were submitted to bilateral sinus-floor elevation In one side (test group) the sinus lift was performed with rhBMP-2 on a PLPG-sponge, while the contralateral side served as the control by using cancellous bone from the iliac crest Three different implants (Branemark (R), 31 (R) and Straumann (R)) were inserted either simultaneously with the sinus augmentation or as a two staged procedure 6 weeks later The animals were sacrificed at 6 and 12 weeks for histological and histomorphometrical evaluations during which bone-to-implant contact (BIC) and bone density (BD) were evaluated Results BD and BIC were significantly higher at 12 weeks in the test group if the Implants were placed at the time of the sinus lift (p < 0 05) No difference was observed between the different implant systems or positions Conclusions The use of rhBMP-2 with PLPG-sponge increased BIC as well as BD in the augmented sinuses if compared to autologous bone Different implant systems and positions of the implants had no effect on BIC or BD (C) 2010 European Association for Cranio-Maxillo-Facial Surgery
Resumo:
Background and Aims Plant growth regulators play an important role in seed germination. However, much of the current knowledge about their function during seed germination was obtained using orthodox seeds as model systems, and there is a paucity of information about the role of plant growth regulators during germination of recalcitrant seeds. In the present work, two endangered woody species with recalcitrant seeds, Araucaria angustifolia (Gymnosperm) and Ocotea odorifera (Angiosperm), native to the Atlantic Rain Forest, Brazil, were used to study the mobilization of polyamines (PAs), indole-acetic acid (IAA) and abscisic acid (ABA) during seed germination. Methods Data were sampled from embryos of O. odorifera and embryos and megagametophytes of A. angustifolia throughout the germination process. Biochemical analyses were carried out in HPLC. Key Results During seed germination, an increase in the (Spd + Spm) : Put ratio was recorded in embryos in both species. An increase in IAA and PA levels was also observed during seed germination in both embryos, while ABA levels showed a decrease in O. odorifera and an increase in A. angustifolia embryos throughout the period studied. Conclusions The (Spd + Spm) : Put ratio could be used as a marker for germination completion. The increase in IAA levels, prior to germination, could be associated with variations in PA content. The ABA mobilization observed in the embryos could represent a greater resistance to this hormone in recalcitrant seeds, in comparison to orthodox seeds, opening a new perspective for studies on the effects of this regulator in recalcitrant seeds. The gymnosperm seed, though without a connective tissue between megagametophyte and embryo, seems to be able to maintain communication between the tissues, based on the likely transport of plant growth regulators.
Resumo:
The action of a synthetic antimicrobial peptide analog of Plantaricin 149 (Pln149a) against Saccharomyces cerevisiae and its interaction with biomembrane model systems were investigated. Pln149a was shown to inhibit S. cerevisiae growth by more than 80% in YPD medium, causing morphological changes in the yeast wall and remaining active and resistant to the yeast proteases even after 24 h of incubation. Different membrane model systems and carbohydrates were employed to better describe the Pln149a interaction with cellular components using circular dichroism and fluorescence spectroscopies, adsorption kinetics and surface elasticity in Langmuir monolayers. These assays showed that Pln149a does not interact with either mono/polysaccharides or zwitterionic LUVs, but is strongly adsorbed to and incorporated into negatively charged surfaces, causing a conformational change in its secondary structure from random-coil to helix upon adsorption. From the concurrent analysis of Pln149a adsorption kinetics and dilatational surface elasticity data, we determined that 2.5 mu M is the critical concentration at which Pln149a will disrupt a negative DPPG monolayer. Furthermore, Pln149a exhibited a carpet-like mechanism of action, in which the peptide initially binds to the membrane, covering its surface and acquiring a helical structure that remains associated to the negatively charged phospholipids. After this electrostatic interaction, another peptide region causes a strain in the membrane, promoting its disruption. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
OBJECTIVES: The aims of this study were to evaluate the effect of resin composite (Filtek Z250 and Filtek Flow Z350) and adhesive system [(Solobond Plus, Futurabond NR (VOCO) and Adper Single Bond (3M ESPE)] on the microtensile (μTBS) and microshear bond strength (μSBS) tests on enamel, and to correlate the bond strength means between them. MATERIAL AND METHODS: Thirty-six extracted human molars were sectioned to obtain two tooth halves: one for μTBS and the other one for μSBS. Adhesive systems and resin composites were applied to the enamel ground surfaces and light-cured. After storage (37(0)C/24 h) specimens were stressed (0.5 mm/min). Fracture modes were analyzed under scanning electron microscopy. The data were analyzed using two-way ANOVA and Tukey's test (α=0.05). RESULTS: The correlation between tests was estimated with Pearson's product-moment correlation statistics (α =0.05). For both tests only the main factor resin composite was statistically significant (p<0.05). The correlation test detected a positive (r=0.91) and significant (p=0.01) correlation between the tests. CONCLUSIONS: The results were more influenced by the resin type than by the adhesives. Both microbond tests seem to be positive and linearly correlated and can therefore lead to similar conclusions.
Resumo:
Though introduced recently, complex networks research has grown steadily because of its potential to represent, characterize and model a wide range of intricate natural systems and phenomena. Because of the intrinsic complexity and systemic organization of life, complex networks provide a specially promising framework for systems biology investigation. The current article is an up-to-date review of the major developments related to the application of complex networks in biology, with special attention focused on the more recent literature. The main concepts and models of complex networks are presented and illustrated in an accessible fashion. Three main types of networks are covered: transcriptional regulatory networks, protein-protein interaction networks and metabolic networks. The key role of complex networks for systems biology is extensively illustrated by several of the papers reviewed.