111 resultados para Tick infestation
Resumo:
Ticks (Acari: Ixodidae) are bloodsucking ectoparasitic arthropods of human and veterinary medical importance. Tick saliva has been shown to contain a wide range of bioactive molecules with vasodilatory, antihemostatic, and immunomodulatory activities. We have previously demonstrated that saliva from Rhipicephalus sanguineus ticks inhibits the maturation of dendritic cells (DCs) stimulated with LPS. Here we examined the mechanism of this immune subversion, evaluating the effect of tick saliva on Toll-like receptor (TLR)-4 signalling pathway in bone marrow-derived DCs. We demonstrated that R. sanguineus tick saliva impairs maturation of DCs stimulated with LIPS, a TLR-4 ligand, leading to increased production of interleukin (IL)-10 and reduced synthesis of IL-12p70 and TNF-alpha. The immunomodulatory effect of the tick saliva on the production of pro-inflammatory cytokines by DCs stimulated with LPS was associated with the observation that tick saliva inhibits the activation of the ERK 1/2 and p38 MAP kinases. These effects were independent of the expression of TLR-4 on the surface of DCs. Additionally, saliva-treated DCs also presented a similar pattern of cytokine modulation in response to other TLR ligands. Since the recent literature reports that several parasites evade immune responses through TLR-2-mediated production of IL-10, we evaluated the effect of tick saliva on the percentage of TLR-2(+) DCs stimulated with the TLR-2 ligand lipoteicoic acid (LTA). The data showed that the population of DCs expressing TLR-2 was significantly increased in DCs treated with LTA plus saliva. In addition, tick saliva alone increased the expression of TLR-2 in a dose- and time-dependent manner. Our data suggest that tick saliva induces regulatory DCs, which secrete IL-10 and low levels of IL-12 and TNF-alpha when stimulated by TLR ligands. Such regulatory DCs are associated with expression of TLR-2 and inhibition of ERK and p38, which promotes the production of IL-10 and thus down-modulates the host`s immune response, possibly favouring susceptibility to tick infestations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the modeling of a weed infestation risk inference system that implements a collaborative inference scheme based on rules extracted from two Bayesian network classifiers. The first Bayesian classifier infers a categorical variable value for the weed-crop competitiveness using as input categorical variables for the total density of weeds and corresponding proportions of narrow and broad-leaved weeds. The inferred categorical variable values for the weed-crop competitiveness along with three other categorical variables extracted from estimated maps for the weed seed production and weed coverage are then used as input for a second Bayesian network classifier to infer categorical variables values for the risk of infestation. Weed biomass and yield loss data samples are used to learn the probability relationship among the nodes of the first and second Bayesian classifiers in a supervised fashion, respectively. For comparison purposes, two types of Bayesian network structures are considered, namely an expert-based Bayesian classifier and a naive Bayes classifier. The inference system focused on the knowledge interpretation by translating a Bayesian classifier into a set of classification rules. The results obtained for the risk inference in a corn-crop field are presented and discussed. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Despite modern weed control practices, weeds continue to be a threat to agricultural production. Considering the variability of weeds, a classification methodology for the risk of infestation in agricultural zones using fuzzy logic is proposed. The inputs for the classification are attributes extracted from estimated maps for weed seed production and weed coverage using kriging and map analysis and from the percentage of surface infested by grass weeds, in order to account for the presence of weed species with a high rate of development and proliferation. The output for the classification predicts the risk of infestation of regions of the field for the next crop. The risk classification methodology described in this paper integrates analysis techniques which may help to reduce costs and improve weed control practices. Results for the risk classification of the infestation in a maize crop field are presented. To illustrate the effectiveness of the proposed system, the risk of infestation over the entire field is checked against the yield loss map estimated by kriging and also with the average yield loss estimated from a hyperbolic model.
Resumo:
The characterization of a coffee gene encoding a protein similar to miraculin-like proteins, which are members of the plant Kunitz serine trypsin inhibitor (STI) family of proteinase inhibitors (PIs), is described. PIs are important proteins in plant defence against insects and in the regulation of proteolysis during plant development. This gene has high identity with the Richadella dulcifica taste-modifying protein miraculin and with the tomato protein LeMir; and was named as CoMir (Coffea miraculin). Structural protein modelling indicated that CoMir had structural similarities with the Kunitz STI proteins, but suggested specific folding structures. CoMir was up-regulated after coffee leaf miner (Leucoptera coffella) oviposition in resistant plants of a progeny derived from crosses between C. racemosa (resistant) and C. arabica (susceptible). Interestingly, this gene was down-regulated during coffee leaf miner herbivory in susceptible plants. CoMir expression was up-regulated after abscisic acid application and wounding stress and was prominent during the early stages of flower and fruit development. In situ hybridization revealed that CoMir transcripts accumulated in the anther tissues that display programmed cell death (tapetum, endothecium and stomium) and in the metaxylem vessels of the petals, stigma and leaves. In addition, the recombinant protein CoMir shows inhibitory activity against trypsin. According to the present results CoMir may act in proteolytic regulation during coffee development and in the defence against L. coffeella. The similarity of CoMir with other Kunitz STI proteins and the role of CoMir in plant development and plant stress are discussed.
Resumo:
Dendritic cells (DCs) are powerful initiators of innate and adaptive immune responses. Ticks are blood-sucking ectoparasite arthropods that suppress host immunity by secreting immunomodulatory molecules in their saliva. Here, compounds present in Rhipicephalus sanguineus tick saliva with immunomodulatory effects on DC differentiation, cytokine production, and costimulatory molecule expression were identified. R. sanguineus tick saliva inhibited IL-12p40 and TNF-alpha while potentiating IL-10 cytokine production by bone marrow-derived DCs stimulated by Toll-like receptor-2, -4, and -9 agonists. To identify the molecules responsible for these effects, we fractionated the saliva through microcon filtration and reversed-phase HPLC and tested each fraction for DC maturation. Fractions with proven effects were analyzed by micro-HPLC tandem mass spectrometry or competition ELISA. Thus, we identified for the first time in tick saliva the purine nucleoside adenosine (concentration of similar to 110pmol/mu l) as a potent anti-inflammatory salivary inhibitor of DC cytokine production. We also found prostaglandin E(2) (PGE(2) similar to 100 nM) with comparable effects in modulating cytokine production by DCs. Both Ado and PGE(2) inhibited cytokine production by inducing cAMP-PKA signaling in DCs. Additionally, both Ado and PGE(2) were able to inhibit expression of CD40 in mature DCs. Finally, flow cytometry analysis revealed that PGE(2), but not Ado, is the differentiation inhibitor of bone marrow-derived DCs. The presence of non-protein molecules adenosine and PGE(2) in tick saliva indicates an important evolutionary mechanism used by ticks to subvert host immune cells and allow them to successfully complete their blood meal and life cycle.
Resumo:
Ticks deposit saliva at the site of their attachment to a host in order to inhibit haemostasis, inflammation and innate and adaptive immune responses. The anti-haemostatic properties of tick saliva have been described by many studies, but few show that tick infestations or its anti-haemostatic components exert systemic effects in vivo. In the present study, we extended these observations and show that, compared with normal skin, bovine hosts that are genetically susceptible to tick infestations present an increase in the clotting time of blood collected from the immediate vicinity of haemorrhagic feeding pools in skin infested with different developmental stages of Rhipicepahlus microplus; conversely, we determined that clotting time of tick-infested skin from genetically resistant bovines was shorter than that of normal skin. Coagulation and inflammation have many components in common and we determined that in resistant bovines, eosinophils and basophils, which are known to contain tissue factor, are recruited in greater numbers to the inflammatory site of tick bites than in susceptible hosts. Finally, we correlated the observed differences in clotting times with the expression profiles of transcripts for putative anti-haemostatic proteins in different developmental stages of R. microplus fed on genetically susceptible and resistant hosts: we determined that transcripts coding for proteins similar to these molecules are overrepresented in salivary glands from nymphs and males fed on susceptible bovines. Our data indicate that ticks are able to modulate their host`s local haemostatic reactions. In the resistant phenotype, larger amounts of inflammatory cells are recruited and expression of anti-coagulant molecules is decreased tick salivary glands, features that can hamper the tick`s blood meal. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Platelet aggregation and acute inflammation are key processes in vertebrate defense to a skin injury. Recent studies uncovered the mediation of 2 serine proteases, cathepsin G and chymase, in both mechanisms. Working with a mouse model of acute inflammation, we revealed that an exogenous salivary protein of Ixodes ricinus, the vector of Lyme disease pathogens in Europe, extensively inhibits edema formation and influx of neutrophils in the inflamed tissue. We named this tick salivary gland secreted effector as I ricinus serpin-2 (IRS-2), and we show that it primarily inhibits cathepsin G and chymase, while in higher molar excess, it affects thrombin activity as well. The inhibitory specificity was explained using the crystal structure, determined at a resolution of 1.8 angstrom. Moreover, we disclosed the ability of IRS-2 to inhibit cathepsin G-induced and thrombin-induced platelet aggregation. For the first time, an ectoparasite protein is shown to exhibit such pharmacological effects and target specificity. The stringent specificity and biological activities of IRS-2 combined with the knowledge of its structure can be the basis for the development of future pharmaceutical applications. (Blood. 2011;117(2):736-744)
Resumo:
The present study consisted of two experiments that evaluated experimental infections of Haemaphysalis leporispalustris ticks by a Brazilian strain of Rickettsia rickettsii, and their effect on tick biology. In experiment I, ticks were exposed to R. rickettsii during the larval, nymphal or adult stages by feeding on rabbits (Oryctolagus cuniculus) needle-inoculated with R. rickettsii, and thereafter reared on uninfected rabbits for the entire next tick generation. Regardless of the tick stage that acquired the infection, all subsequent tick stages were shown to be infected by PCR (infection rates varying from 1.3 to 41.7%), and were able to transmit R. rickettsii to uninfected rabbits, as demonstrated by rabbit seroconversion, guinea pig inoculation with rabbit blood, and PCR on rabbit blood. In Experiment II, ticks were exposed to R. rickettsii during the larval stage by feeding on rabbits co-infested with R. rickettsii-infected adult ticks, and thereafter reared on uninfected rabbits until the next generation of larvae. Again, all subsequent tick stages were shown to be infected by PCR (infection rates varying from 3.0 to 40.0%), and were able to transmit R. rickettsii to uninfected rabbits. Thus, it was demonstrated that larvae, nymphs, and adults of H. leporispalustris were able to acquire and maintain the R. rickettsii infection by transstadial and transovarial transmissions within the tick population, with active transmission of the bacterium to susceptible rabbits by all parasitic stages. Analyses of biological parameters of uninfected and R. rickettsii-infected tick lineages were performed in order to evaluate possible deleterious effects of R. rickettsii to the infected tick lineages. Surprisingly, all but one of the four R. rickettsii-experimental groups of the present study showed overall better biological performance than their sibling uninfected control ticks. Results of the present study showed that H. leporispalustris could support infection by a high virulent strain of R. rickettsii for at least two generations, in which infected tick lineages tended to have better performance than uninfected ticks. Our results support a possible role of H. leporispalustris in the enzootic maintenance of R. rickettsii in Latin America, as previously suggested by earlier works.
Resumo:
During field work in Nazare Paulista, state of Sao Paulo, Brazil, we found 13 (56.5%) of 23 birds (mostly Passeriformes) to be infested by 28 larvae and I nymph of Amblyomma spp. Two larvae were reared to the adult stage, being taxonomically identified as Amblyomma parkeri Fonseca and Aragao, whereas five larvae and one nymph were identified as Amblyomma longirostre Koch. All six A. longirostre specimens were shown to be infected by rickettsia, as demonstrated by polymerase chain reaction (PCR) targeting two rickettsial genes (gltA and ompA) or isolation of rickettsia in cell culture from one of the ticks. This isolate was designated as strain AL, which was established in Vero cell culture and was molecularly characterized by DNA sequencing fragments of the rickettsial genes gltA, htrA, ompA, and ompB. Phylogenetic analyses inferred from ompA and ompB partial sequences showed a high degree of similarity of strain AL with Rickettsia sp. strain ARANHA, previously detected by PCR in A. longirostre ticks from Rondonia, northern Brazil. We conclude that strain AL is a new rickettsia genotype belonging to the same species of strain ARANHA, which are closely related to Candidatus `R. amblyomniii`. Further studies should elucidate if strains AL and ARANHA are different strains of Candidatus `R. amblyommii` or are a new species.
Resumo:
The present study evaluated the drop-off rhythm of Rhipicephalus sanguineus (Latreille) ticks from two populations from Brazil, one from Monte Negro, state of Rondonia, and another from Belo Horizonte, state of Minas Gerais. Artificial infestations with ticks were performed on dogs in the laboratory, held in a light: scotophase regimen of 12:12 h. Larval drop-off rhythm was characterized by similar number of engorged larvae detaching during both periods of light and scotophase, or by a larger number of larvae detaching during the light period. In contrast, most of the engorged nymphs and females detached from dogs during the scotophase period. These results indicate that under natural conditions, most of R. sanguineus engorged nymphs and females detach from dogs during the night period, whereas engorged larvae detach in higher proportions during daytime. Based on these data, tick control measures, encompassing environmental treatments with acaricide, should be indicated. The control measures are especially indicated in places where dogs spend or visit during the night period, since these places possibly harbor most of the free-living stages of R. sanguineus.
Resumo:
The neotropical tick Amblyomma cajennense is a significant pest to domestic animals, the most frequently human-biting tick in South America and the main vector of Brazilian spotted fever (caused by Rickettsia rickettsii), a deadly human disease. The purpose of this study is to characterize the adult A. cajennense salivary gland transcriptome by expressed sequence tags (ESTs). We report the analysis of 1754 clones obtained from a cDNA library, which reveal mainly transcripts related to proteins involved in the hemostatic processes, especially proteases and their inhibitors. Remarkably, five types of possible serine protease inhibitors were found, including a molecule with a distinguished structure that contains repeats of the active motif of hirudin inhibitors. Besides, other components that may be active over the host immune system or acting as defensins against infecting microorganisms were also described, including a molecule similar to insect venom allergens. The conjunction of components from this transcriptome suggests a diverse strategy of A. cajennense tick during feeding, but emphasized in the coagulation system. (c) 2008 Published by Elsevier Ltd.
Resumo:
Tick-borne zoonoses (TBZ) are emerging diseases worldwide. A large amount of information (e.g. case reports, results of epidemiological surveillance, etc.) is dispersed through various reference sources (ISI and non-ISI journals, conference proceedings, technical reports, etc.). An integrated database-derived from the ICTTD-3 project (http://www.icttd.nl)-was developed in order to gather TBZ records in the (sub-)tropics, collected both by the authors and collaborators worldwide. A dedicated website (http://www.tickbornezoonoses.org) was created to promote collaboration and circulate information. Data collected are made freely available to researchers for analysis by spatial methods, integrating mapped ecological factors for predicting TBZ risk. The authors present the assembly process of the TBZ database: the compilation of an updated list of TBZ relevant for (sub-)tropics, the database design and its structure, the method of bibliographic search, the assessment of spatial precision of geo-referenced records. At the time of writing, 725 records extracted from 337 publications related to 59 countries in the (sub-)tropics, have been entered in the database. TBZ distribution maps were also produced. Imported cases have been also accounted for. The most important datasets with geo-referenced records were those on Spotted Fever Group rickettsiosis in Latin-America and Crimean-Congo Haemorrhagic Fever in Africa. The authors stress the need for international collaboration in data collection to update and improve the database. Supervision of data entered remains always necessary. Means to foster collaboration are discussed. The paper is also intended to describe the challenges encountered to assemble spatial data from various sources and to help develop similar data collections.
Resumo:
Blood samples collected from 201 humans, 92 dogs, and 27 horses in the state of Espirito Santo, Brazil, were tested by polymerase chain reaction, indirect immunofluorescence assays, and indirect enzyme-linked immunosorbent assay for tick-borne diseases (rickettsiosis, ehrlichiosis, anaplasmosis, borreliosis, babesiosis). Our results indicated that the surveyed counties are endemic for spotted fever group rickettsiosis because sera from 70 (34.8%) humans, 7 (7.6%) dogs, and 7 (25.9%) horses were reactive to at least one of the six Rickettsia species tested. Although there was evidence of ehrlichiosis (Ehrlichia canis) and babesiosis (Babesia cams vogeli, Theileria equi) in domestic animals, no human was positive for babesiosis and only four individuals were serologically positive for E. canis. Borrelia burgdorferi-serologic reactive sera were rare among humans and horses, but encompassed 51% of the canine samples, suggesting that dogs and their ticks can be part of the epidemiological cycle of the causative agent of the Brazilian zoonosis, named Baggio-Yoshinari Syndrome.
Resumo:
The Rhipicephalus (Boophilus) microplus BM86 and BM95 glycoproteins are homologous proteins that protect cattle against tick infestations. In this study, we demonstrated that the recombinant chimeric protein comprising tick BM95 immunogenic peptides fused to the A. marginale MSP1a N-terminal region for presentation on the Escherichia coli membrane was protective against R. microplus infestations in rabbits. This system provides a novel and simple approach for the production of tick protective antigens by surface display of antigenic protein chimera on live E. coli and suggests the possibility of using recombinant bacterial membrane fractions for vaccination against cattle tick infestations. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Males, females, and larvae of Carios fonsecai sp. nov. are described from free-living ticks collected in a cave at Bonito, state of Mato Grosso do Sul, Brazil. The presence of cheeks and legs with micromammillate cuticle makes adults of C. fonsecai morphologically related to a group of argasid species (mostly bat-associated) formerly classified into the subgenus Alectorobius, genus Ornithodoros. Examination of larvae indicates that C. fonsecai is clearly distinct from most of the previously described Carios species formerly classified into the subgenus Alectorobius, based primarily on its larger body size, dorsal setae number, dorsal plate shape, and hypostomal morphology. On the other hand, the larva of C. fonsecai is most similar to Carios peropteryx, and Carios peruvianus, from which differences in dorsal plate length and width, tarsal setae, and hypostome characteristics are useful for morphological differentiation. The mitochondrial 16S rDNA sequence of C. fonsecai showed to be closest (85-88% identity) to several corresponding sequences of different Carios species available in GenBank. Bats identified as Peropteryx macrotis and Desmodus rotundus were found infested by C. fonsecai larvae in the same cave where the type series was collected. C. fonsecai showed to be aggressive to humans in the laboratory.