60 resultados para Sucrose intake
Resumo:
The effect of daily ingestion of collagen hydrolysate (CH) on skin extracellular matrix proteins was investigated. Four-week-old male Wistar rats were fed a modified AIN-93 diet containing 12% casein as the reference group or CH as the treatment group. A control group was established in which animals were fed a non-protein-modified AIN-93 diet. The diets were administered continuously for 4 weeks when six fresh skin samples from each group were assembled and subjected to extraction of protein. Type I and IV collagens were studied by immunoblot, and activities of matrix metalloproteinase (MMP) 2 and 9 were assessed by zymography. The relative amount of type I and IV collagens was significantly (P<.05) increased after CH intake compared with the reference diet group (casein). Moreover, CH uptake significantly decreased both proenzyme and active forms of MMP2 compared with casein and control groups (P<.05). In contrast, CH ingestion did not influence on MMP9 activity. These results suggest that CH may reduce aging-related changes of the extracellular matrix by stimulating anabolic processes in skin tissue.
Resumo:
This study aimed to investigate the effects of physical training, and different levels of protein intake in the diet, on the growth and nutritional status of growing rats. Newly-weaned Wistar rats (n=48) were distributed into six experimental groups: three of them were subjected to physical swim training (1 h per day. 5 d per week, for 4 wk, after 2 wk of familiarization) and the other three were considered as controls (non-trained). Each pair of groups, trained and non-trained, received diets with a different level of protein in their composition: 14%. 21% or 28%. The animals were euthanized at the end of the training period and the following analyses were performed: proteoglycan synthesis as a biomarker of bone and cartilage growth, IGF-I (insulin-like growth factor-I) assay as a biomarker of growth and nutritional status. total RNA and protein concentration and protein synthesis measured in vivo using a large-dose phenylalanine method. As a main finding, increased dietary protein, combined with physical training, was able to improve neither tissue protein synthesis nor muscle growth. In addition, cartilage and bone growth seem to be deteriorated by the lower and the higher levels of protein intake. Our data allow us to conclude that protein enhancement in the diet, combined with physical exercise, does not stimulate tissue protein synthesis or muscle mass growth. Furthermore, physical training, combined with low protein intake, was not favorable to bone development in growing animals.
Resumo:
Sucrose was used to prepare montmorillonite/carbon nanocomposites by calcination in a reduced atmosphere. The aim was to investigate the changes derived from varying the clay and sucrose content in the resulting material and to change the adsorption properties to evaluate its potential to be used in catalytic applications. X-ray diffraction patterns revealed the formation of an intercalated nanostructure composed of carbon-filled clay mineral layers, which was confirmed by the Fourier transform infrared spectra and thermogravimetry curves. Differences in composition and texture surface were detected by scanning electron microscopy images and were supported by viscosity measurements. These measurements were helpful in understanding why the sample prepared with the highest sucrose content presented the lowest gasoline and methylene blue adsorption results and why the highest adsorption properties were attributed to the sample with the highest clay content. Moreover, BET and BJH studies allowed understanding oleic acid catalytic conversion. Finally, a water flux simulation test was performed to determine the mechanical resistance in comparison to an activated carbon. It was found that the nanocomposites were more resistant, supporting their use in catalytic applications for a longer period of time. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Saccharomyces cerevisiae hexokinase-less strains were produced to study the production of ethanol and fructose from sucrose. These strains do not have the hexokinases A and B. Twenty-three double-mutant strains were produced, and then, three were selected for presenting a smaller growth in yeast extract-peptone-fructose. In fermentations with a medium containing sucrose (180.3 g L-1) and with cell recycles, simulating industrial conditions, the capacity of these mutant yeasts in inverting sucrose and fermenting only glucose was well characterized. Besides that, we could also see their great tolerance to the stresses of fermentative recycles, where fructose production (until 90 g L-1) and ethanol production (until 42.3 g L-1) occurred in cycles of 12 h, in which hexokinase-less yeasts performed high growth (51.2% of wet biomass) and viability rates (77% of viable cells) after nine consecutive cycles.
Resumo:
Expressed sequence tags derived markers have a great potential to be used in functional map construction and QTL tagging. In the present work, sugarcane genomic probes and expressed sequence tags having homology to genes, mostly involved in carbohydrate metabolism were used in RFLP assays to identify putative QTLs as well as their epistatic interactions for fiber content, cane yield, pol and tones of sugar per hectare, at two crop cycles in a progeny derived from a bi-parental cross of sugarcane elite materials. A hundred and twenty marker trait associations were found, of which 26 at both crop cycle and 32 only at first ratoon cane. A sucrose synthase derived marker was associated with a putative QTL having a high negative effect on cane yield and also with a QTL having a positive effect on Pol at both crop cycles. Fifty digenic epistatic marker interactions were identified for the four traits evaluated. Of these, only two were observed at both crop cycles.
Resumo:
Target region amplification polymorphism (TRAP) markers were used to estimate the genetic similarity (GS) among 53 sugarcane varieties and five species of the Saccharum complex. Seven fixed primers designed from candidate genes involved in sucrose metabolism and three from those involved in drought response metabolism were used in combination with three arbitrary primers. The clustering of the genotypes for sucrose metabolism and drought response were similar, but the GS based on Jaccard`s coefficient changed. The GS based on polymorphism in sucrose genes estimated in a set of 46 Brazilian varieties, all of which belong to the three Brazilian breeding programs, ranged from 0.52 to 0.9, and that based on drought data ranged from 0.44 to 0.95. The results suggest that genetic variability in the evaluated genes was lower in the sucrose metabolism genes than in the drought response metabolism ones.
Resumo:
Background & aims: This study was undertaken to assess magnesium intake and magnesium status in patients with type 2 diabetes, and to identify the parameters that best predict alterations in fasting glucose and plasma magnesium. Methods: A cross-sectional study was carried out in patients with type 2 diabetes (n = 51; 53.6 +/- 10.5 y) selected within the inclusion factors, at the University Hospital Onofre Lopes. Magnesium intake was assessed by three 24-h recalls. Urine, plasma and erythrocytes magnesium, fasting and 2-h postprandial glucose, HbA1, microalbuminuria, proteinuria, and serum and urine creatinine were measured. Results: Mean magnesium intake (9.37 +/- 1.76 mmol/d), urine magnesium (2.80 +/- 1.51 mmol/d), plasma magnesium (0.71 +/- 0.08 mmol/L) and erythrocyte magnesium (1.92 +/- 0.23 mmol/L) levels were low. Seventy-seven percent of participants presented one or more magnesium status parameters below the cut-off points of 3.00 mmol/L for urine, 0.75 mmol/L for plasma and 1.65 mmol/L for erythrocytes. Subjects presented poor blood glucose control with fasting glucose of 8.1 +/- 3.7 mmol/L, 2-h postprandial glucose of 11.1 +/- 5.1 mmol/L, and HbA1 of 11.4 +/- 3.0%. The parameters that influenced fasting glucose were urine, plasma and dietary magnesium, while plasma magnesium was influenced by creatinine clearance. Conclusions: Magnesium status was influenced by kidney depuration and was altered in patients with type 2 diabetes, and magnesium showed to play an important role in blood glucose control. (C) 2011 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Resumo:
BACKGROUND: This study reported the effects of the daily intake of anthocyanins and ellagitannins (ET) extracted from blackberries on the markers for oxidative status in healthy rats. RESULTS: The phenolic compounds were administered from three different extracts: an aqueous extract of blackberry (BJ) and its two derived fractions: anthocyanin-enriched (AF) and ET-enriched (EF) fractions. After 35 days` administration, the AF and EF extracts significantly reduced thiobarbituric acid reactive substance levels and increased glutathione levels in the liver, kidney and brain. Plasma antioxidant capacity increased only in the group that received AF. Antioxidant enzyme activity and expression did not follow a pattern of response varying according to the tissues and extracts. A significant increase in the catalase activity was observed only in the plasma of the groups administered anthocyanin-containing extracts, which were the BJ and AF groups. Glutathione peroxidase activity was significantly increased in the liver and brain after EF treatment, and the highest increase in its expression was observed in the livers and brains of rats that received AF and EF, respectively. CONCLUSION: The results demonstrate that long-term intake of anthocyanin and ET through diet affects antioxidant enzyme activity and expression, and enhances oxidative markers in healthy rats. (C) 2010 Society of Chemical Industry
Resumo:
The objective of this study was to investigate the ergogenic effects of caffeine on motor performance of judo female athletes. Thirteen female athletes (17.6 +/- 1.6 years, 58.3 +/- 11.4 kg, 162 +/- 4.1 cm, 22.5 +/- 4 kg/m(2)), registered in the State Federation of Judo for at least two years, participated in this study. The motor performance was assessed using the Special Judo Fitness Test (SJFT), from which was considered the number of throws in each block, the total number of throws, recovery and final heart rate (HR) and final score in SJFT. The subjects were tested in two different conditions, after ingestion of gelatin capsules of caffeine (6 mg.kg(-1)) or placebo (dextrose) 60 minutes before testing in a randomized double-blind, crossover study. The number of throws in each block did not differs between the caffeine (CAF) and placebo (PL) conditions (Block A: 4.53 +/- 0.51 CAF and 4.46 +/- 0.51 PL; Block B: 8.3 +/- 0.63 CAF and 8.23 +/- 0.72 PL; Block C: 7.23 +/- 0.59 CAF and 7.46 +/- 0.77 PL), as well as the total number of throws (20.07 +/- 1.18 CAF and 20.15 +/- 1.67 PL), HR (Final: 190.3 +/- 9.63 bpm CAF and 190.69 +/- 9.19 bpm PL; Recovery 162.07 +/- 13.78 bpm CAF and 164.3 +/- 9.64 bpm PL) and final score in SJFT (17.59 +/- 1.4 CAF and 17.75 +/- 1.98 PL). Ingestion of caffeine did not improve performance during high intensity and short duration exercise in judo fighters
Resumo:
Background and purpose: The contribution of endothelin-1 (ET-1) to vascular hyper-reactivity associated with chronic ethanol intake, a major risk factor in several cardiovascular diseases, remains to be investigated. Experimental approach: The biphasic haemodynamic responses to ET-1 (0.01-0.1 nmol kg(-1), i.v.) or to the selective ET(B) agonist, IRL1620 (0.001-1.0 nmol kg(-1), i.v.), with or without ET(A) or ET(B) antagonists (BQ123 (c(DTrp-Dasp-Pro-Dval-Leu)) at 1 and 2.5 mg kg(-1) and BQ788 (N-cis-2,6-dimethyl-piperidinocarbonyl-L-gamma-methylleucyl1-D-1methoxycarbonyltryptophanyl-D-norleucine) at 0.25 mg kg(-1), respectively) were tested in anaesthetized rats, after 2 weeks` chronic ethanol treatment. Hepatic parameters and ET receptor protein levels were also determined. Key results: The initial hypotensive responses to ET-1 or IRL1620 were unaffected by chronic ethanol intake, whereas the subsequent pressor effects induced by ET-1, but not by IRL1620, were potentiated. BQ123 at 2.5 but not 1 mg kg(-1) reduced the pressor responses to ET-1 in ethanol-treated rats. Conversely, BQ788 (0.25 mg kg(-1)) potentiated ET-1-induced increases in mean arterial blood pressure in control as well as in ethanol-treated rats. Interestingly, in the latter group, increases in heart rate, induced by ET-1 at a dose of 0.025 mg kg(-1) were enhanced following ET(B) receptor blockade. Finally, we observed higher levels of ET(A) receptor in the heart and mesenteric artery and a reduction of ET(B) receptor protein levels in the aorta and kidney from rats chronically treated with ethanol. Conclusions and implications: Increased vascular reactivity to ET-1 and altered protein levels of ET(A) and ET(B) receptors could play a role in the pathogenesis of cardiovascular complications associated with chronic ethanol consumption.
Resumo:
Four Saccharomyces cerevisiae Brazilian industrial ethanol production strains were grown, under shaken and static conditions, in media containing 22% (w/v) sucrose supplemented with nitrogen sources varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids) and peptides (peptone). Sucrose fermentations by Brazilian industrial ethanol production yeasts strains were strongly affected by both the structural complexity of the nitrogen source and the availability of oxygen. Data suggest that yeast strains vary in their response to the nitrogen source`s complex structure and to oxygen availability. In addition, the amount of trehalose produced could be correlated with the fermentation performance of the different yeasts, suggesting that efficient fuel ethanol production depends on finding conditions which are appropriate for a particular strain, considering demand and dependence on available nitrogen sources in the fermentation medium.
Resumo:
High nutritional levels of iodine may induce a higher prevalence of autoimmune thyroiditis,hypothyroidism, goiter, as well as hyperthyroidism, mostly in the elderly. This study assessed thyroid volume and ultrasonographic abnormalities as well as urinary iodine excretion (UIE) in 964 schoolchildren living in an iodine-sufficient area in southern Brazil. Thyroid volume correlated with age and body surface area in boys and girls. In 76.8% of the children, UIE was above 300 mu g/l, with higher levels among boys compared to girls (484.2 mu g/l vs 435.3 mu g/l, p <0.001). Thyroid abnormalities detected by ultrasonography included hemiagenesis (0.5%), nodules (0.2%), cysts (0.7%), and hypoechogenicity (11.7%). Goiter was present in 1.9% of the children. Hypoechogenicity, a relevant marker of autoimmune thyroiditis, was the most common abnormality found in our study, and this may be linked to excessive iodine intake.
Resumo:
Objectives: This study evaluated the effect of magnesium dietary deficiency on bone metabolism and bone tissue around implants with established osseointegration. Materials and methods: For this, 30 rats received an implant in the right tibial metaphysis. After 60 days for healing of the implants, the animals were divided into groups according to the diet received Control group (CTL) received a standard diet with adequate magnesium content, while test group (Mg) received the same diet except for a 90% reduction of magnesium. The animals were sacrificed after 90 days for evaluation of calcium, magnesium, osteocalcin and parathyroid hormone (PTH) serum levels and the deoxypyridinoline (DPD) level in the urine. The effect of magnesium deficiency on skeletal bone tissue was evaluated by densitometry of the lumbar vertebrae, while the effect of bone tissue around titanium implants was evaluated by radiographic measurement of cortical bone thickness and bone density. The effect on biomechanical characteristics was verified by implant removal torque testing. Results: Magnesium dietary deficiency resulted in a decrease of the magnesium serum level and an increase of PTH and DPD levels (P <= 0.05). The Mg group also presented a loss of systemic bone mass decreased cortical bone thickness and lower values of removal torque of the implants (P <= 0.01). Conclusions: The present study concluded that magnesium-deficient diet had a negative influence on bone metabolism as well as on the bone tissue around the implants.
Resumo:
We investigated the effects of dietary trans fatty acids, PUFA, and SEA on body and liver fat content, liver histology, and mRNA of enzymes involved in fatty acid metabolism. LDL receptor knockout weaning male mice were fed for 16 wk with diets containing 40% energy as either trans fatty acids (TRANS), PUFA, or SEA. Afterwards, subcutaneous and epididymal fat were weighed and histological markers of nonalcoholic fatty liver disease (NAFLD) were assessed according to the Histological Scoring System for NAFLD. PPAR alpha, PPAR gamma, microsomal triglyceride transfer protein (MTP), carnitine palmitoyl transferase 1 (CPT-1), and sterol regulatory element binding protein-1c (SREBP-1c) mRNA were measured by quantitative RT-PCR. Food intake was similar in the 3 groups, although mice fed the TRANS diet gained less weight than those receiving the PUFA diet. Compared with the PUFA- and SEA-fed mice, TRANS-fed mice had greater plasma total cholesterol (TC) and triglyceride (TG) concentrations, less epididymal and subcutaneous fat, larger livers with nonalcoholic steatohepatitis (NASH)-like lesions, and greater liver TC and TG concentrations. Macrosteatosis in TRANS-fed mice was associated with a higher homeostasis model assessment of insulin resistance (HOMA(IR)) index and upregulated mRNA related to hepatic fatty acid synthesis (SREBP-1 c and PPAR gamma) and to downregulated MTP mRNA. Diet consumption did not alter hepatic mRNA related to fatty acid oxidation (PPAR alpha and CPT-1). In conclusion, compared with PUFA- and SFA-fed mice, TRANS-fed mice had less adiposity, impaired glucose tolerance characterized by greater HOMA(IR) index, and NASH-like lesions due to greater hepatic lipogenesis. These results demonstrate the role of trans fatty acid intake on the development of key features of metabolic syndrome. J. Nutr. 140: 1127-1132, 2010.
Resumo:
Background: Parenteral nutrition (PN) is used to control the nutritional state after severe intestinal resections. Whenever possible, enteral nutrition (EN) is used to promote intestinal rehabilitation and reduce PN dependency. Our aim is to verify whether EN + oral intake (01) in severe short bowel syndrome (SBS) surgical adult patients can maintain adequate nutritional status in the long term. Methods: This longitudinal retrospective study included 10 patients followed for 7 post-operative years. Body mass index (BMI), percentage of involuntary loss of usual body weight (UWL), free fat mass (FFM), and fat mass (FM) composition assessed by bioelectric impedance, and laboratory tests were evaluated at 6, 12, 24, 36, 48, 60, 72, and 84 months after surgery. Energy and protein offered in HPN and at long term by HEN+ oral intake (01), was evaluated at the same periods. The statistical model of generalized estimating equations with p <0,05 was used. Results: With long term EN + 01 there was a progressive increase in the UWL, a decrease in BMI, FFM, and FM (p < 0,05). PN weaning was possible in eight patients. Infection due to central venous catheter (CVC) contamination was the most common complication (1.2 episodes CVC/patient/year). There was an increase in energy and protein intake supply provided by HEN+OI (p <0.05). All patients survived for at least 2 years, seven for 5 years and six for 7 years of follow-up. Conclusions: In the long term SBS surgical adult patients fed with HEN+OI couldn`t maintain adequate nutritional status with loss of FM and FFM. (Nutr Hosp. 2011;26:834-842) DOI:10.3305/nh.2011.26.4.5153