17 resultados para Structures rayons X
Resumo:
A robust, direct, rapid and non-destructive X-ray diffraction crystallography method to detect the polyprenylated benzophenones 7-epi-clusianone (1) and guttiferone A (2) in extracts from Garcinia brasiliensis is presented. Powder samples of benzophenones 1 and 2, dried hexane extracts from G. brasiliensis seeds and fruit`s pericarp, and the dried ethanolic extract from G. brasiliensis seeds were unambiguously characterized by powder X-ray diffractometry. The calculated X-ray diffraction peaks from crystal structures of analytes 1 and 2, previously determined by single-crystal X-ray diffraction technique, were overlaid to those of the experimental powder diffractograms, providing a practical identification of these compounds in the analyzed material and confirming the pure contents of the powder samples. Using the X-ray diffraction crystallography method, the studied polyprenylated benzophenones were selectively and simultaneously detected in the extracts which were mounted directly on sample holder. In addition, reference materials of the analytes were not required for analyses since the crystal structures of the compounds are known. High performance liquid chromatography analyses also were comparatively carried out to quantify the analytes in the same plant extracts showing to be in agreement with X-ray diffraction crystallography method. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Tibolone polymorphic forms I (monoclinic) and II (triclinic) have been prepared by recrystallization from acetone and toluene, respectively, and characterized by different techniques sensitive to changes in solid state, such as polarized light microscopy, X-ray powder diffractometry, thermal analysis (TG/DTG/DSC), and vibrational spectroscopy (FTIR and Raman microscopy). The nonisothermal decomposition kinetics of the obtained polymorphs were studied using thermogravimetry. The activation energies were calculated through the Ozawa`s method for the first step of decomposition, the triclinic form showed a lower E (a) (91 kJ mol(-1)) than the monoclinic one (95 kJ mol(-1)). Furthermore, Raman microscopy and DSC at low heating rates were used to identify and follow the thermal decomposition of the triclinic form, showing the existence of three thermal events before the first mass loss.