187 resultados para Structural Design
Resumo:
Adenine phosphoribosyltransferase (APRT) is an important enzyme component of the purine recycling pathway. Parasitic protozoa of the order Kinetoplastida are unable to synthesize purines de novo and use the salvage pathway for the synthesis of purine bases rendering this biosynthetic pathway an attractive target for antiparasitic drug design. The recombinant human adenine phosphoribosyltransferase (hAPRT) structure was resolved in the presence of AMP in the active site to 1.76 angstrom resolution and with the substrates PRPP and adenine simultaneously bound to the catalytic site to 1.83 angstrom resolution. An additional structure was solved containing one subunit of the dimer in the apo-form to 2.10 angstrom resolution. Comparisons of these three hAPRT structures with other `type I` PRTases revealed several important features of this class of enzymes. Our data indicate that the flexible loop structure adopts an open conformation before and after binding of both substrates adenine and PRPR Comparative analyses presented here provide structural evidence to propose the role of Glu 104 as the residue that abstracts the proton of adenine N9 atom before its nucleophilic attack on the PRPP anomeric carbon. This work leads to new insights to the understanding of the APRT catalytic mechanism.
Resumo:
The aim of this work is to present a simple, practical and efficient protocol for drug design, in particular Diabetes, which includes selection of the illness, good choice of a target as well as a bioactive ligand and then usage of various computer aided drug design and medicinal chemistry tools to design novel potential drug candidates in different diseases. We have selected the validated target dipeptidyl peptidase IV (DPP-IV), whose inhibition contributes to reduce glucose levels in type 2 diabetes patients. The most active inhibitor with complex X-ray structure reported was initially extracted from the BindingDB database. By using molecular modification strategies widely used in medicinal chemistry, besides current state-of-the-art tools in drug design (including flexible docking, virtual screening, molecular interaction fields, molecular dynamics. ADME and toxicity predictions), we have proposed 4 novel potential DPP-IV inhibitors with drug properties for Diabetes control, which have been supported and validated by all the computational tools used herewith.
Resumo:
Nucleoside diphosphate kinases play a crucial role in the purine-salvage pathway of trypanosomatid protozoa and have been found in the secretome of Leishmania sp., suggesting a function related to host-cell integrity for the benefit of the parasite. Due to their importance for housekeeping functions in the parasite and by prolonging the life of host cells in infection, they become an attractive target for drug discovery and design. In this work, we describe the first structural characterization of nucleoside diphosphate kinases b from trypanosomatid parasites (tNDKbs) providing insights into their oligomerization, stability and structural determinants for nucleotide binding. Crystallographic studies of LmNDKb when complexed with phosphate, AMP and ADP showed that the crucial hydrogen-bonding residues involved in the nucleotide interaction are fully conserved in tNDKbs. Depending on the nature of the ligand, the nucleotide-binding pocket undergoes conformational changes, which leads to different cavity volumes. SAXS experiments showed that tNDKbs, like other eukaryotic NDKs, form a hexamer in solution and their oligomeric state does not rely on the presence of nucleotides or mimetics. Fluorescence-based thermal-shift assays demonstrated slightly higher stability of tNDKbs compared to human NDKb (HsNDKb), which is in agreement with the fact that tNDKbs are secreted and subjected to variations of temperature in the host cells during infection and disease development. Moreover, tNDKbs were stabilized upon nucleotide binding, whereas HsNDKb was not influenced. Contrasts on the surface electrostatic potential around the nucleotide-binding pocket might be a determinant for nucleotide affinity and protein stability differentiation. All these together demonstrated the molecular adaptation of parasite NDKbs in order to exert their biological functions intra-parasite and when secreted by regulating ATP levels of host cells.
Resumo:
Recently, superior cervical ganglionectomy has been performed to investigate a variety of scientific topics from regulation of intraocular pressure to suppression of lingual tumour growth. Despite these recent advances in our understanding of the functional mechanisms underlying superior cervical ganglion (SCG) growth and development after surgical ablation, there still exists a need for information concerning the quantitative nature of the relationships between the removed SCG and its remaining contralateral ganglion and between the remaining SCG and its modified innervation territory. To this end, using design-based stereological methods, we have investigated the structural changes induced by unilateral ganglionectomy in sheep at three distinct timepoints (2, 7 and 12 weeks) after surgery. The effects of time, and lateral (left-right) differences, were examined by two-way analyses of variance and paired t-tests. Following removal of the left SCG, the main findings were: (i) the remaining right SCG was bigger at shorter survival times, i.e. 74% at 2 weeks, 55% at 7 weeks and no increase by 12 weeks, (ii) by 7 weeks after surgery, the right SCG contained fewer neurons (no decrease at 2 weeks, 6% fewer by 7 weeks and 17% fewer by 12 weeks) and (iii) by 7 weeks, right SCG neurons were also larger and the magnitude of this increase grew substantially with time (no rise at 2 weeks, 77% by 7 weeks and 215% by 12 weeks). Interaction effects between time and ganglionectomy-induced changes were significant for SCG volume and mean perikaryal volume. These findings show that unilateral superior cervical ganglionectomy has profound effects on the contralateral ganglion. For future investigations, it would be interesting to examine the interaction between SCGs and their innervation targets after ganglionectomy. Is the ganglionectomy-induced imbalance between the sizes of innervation territories the milieu in which morphoquantitative changes, particularly changes in perikaryal volume and neuron number, occur? Mechanistically, how would those changes arise? Are there any grounds for believing in a ganglionectomy-triggered SCG cross-innervation and neuroplasticity? (C) 2011 ISDN. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objective: To describe the clinical, speech, hearing, and imaging findings in three members of a Brazilian family with Saethre-Chotzen syndrome (SCS) who presented some unusual characteristics within the spectrum of the syndrome. Design: Clinical evaluation was performed by a multidisciplinary team. Direct sequencing of the polymerase chain reaction amplified coding region of the TWIST1 gene, routine and electrophysiological hearing evaluation, speech evaluation, and imaging studies through computed tomography (CT) scan and magnetic resonance imaging (MRI) were performed. Results: TWIST1 gene analysis revealed a Pro136His mutation in all patients. Hearing evaluation showed peripherial and mixed hearing loss in two of the patients, one of them with severe unilateral microtia. Computed tomography scan showed structural middle ear anomalies, and MRI showed distortion of the skull contour as well as some of the brain structures. Conclusions: We report a previously undescribed TWIST1 gene mutation in patients with SCS. There is evidence that indicates hearing loss (conductive and mixed) can be related both with middle ear (microtia, high jugular bulb, and enlarged vestibules) as well as with brain stem anomalies. Here we discuss the relationship between the gene mutation and the clinical, imaging, speech, and hearing findings.
Resumo:
The synthesis of FDU-1 silica with large cage-like mesopores prepared with a new triblock copolymer Vorasurf 504 (R) (Eo)(38)(BO)(46)(EO)(38) was developed. The hydrothermal treatment temperature, the dissolution of the copolymer in ethanol, the HCl concentration, the solution stirring time and the hydrothermal treatment time in a microwave oven were evaluated with factorial design procedures. The dissolution in ethanol is important to produce a material with better porous morphology. Increases in the hydrothermal temperature (100 degrees C) and HCl concentration (2 M) improved structural, textural and chemical properties of the cubic ordered mesoporous silica. Also, longer times induced better physical and chemical property characteristics. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The use of liposomes to encapsulate materials has received widespread attention for drug delivery, transfection, diagnostic reagent, and as immunoadjuvants. Phospholipid polymers form a new class of biomaterials with many potential applications in medicine and research. Of interest are polymeric phospholipids containing a diacetylene moiety along their acyl chain since these kinds of lipids can be polymerized by Ultra-Violet (UV) irradiation to form chains of covalently linked lipids in the bilayer. In particular the diacetylenic phosphatidylcholine 1,2-bis(10,12-tricosadiynoyl)- sn-glycero-3-phosphocholine (DC8,9PC) can form intermolecular cross-linking through the diacetylenic group to produce a conjugated polymer within the hydrocarbon region of the bilayer. As knowledge of liposome structures is certainly fundamental for system design improvement for new and better applications, this work focuses on the structural properties of polymerized DC8,9PC:1,2-dimyristoyl-sn-glycero-3-phusphocholine (DMPC) liposomes. Liposomes containing mixtures of DC8,9PC and DMPC, at different molar ratios, and exposed to different polymerization cycles, were studied through the analysis of the electron spin resonance (ESR) spectra of a spin label incorporated into the bilayer, and the calorimetric data obtained from differential scanning calorimetry (DSC) studies. Upon irradiation, if all lipids had been polymerized, no gel-fluid transition would be expected. However, even samples that went through 20 cycles of UV irradiation presented a DSC band, showing that around 80% of the DC8,9PC molecules were not polymerized. Both DSC and ESR indicated that the two different lipids scarcely mix at low temperatures, however few molecules of DMPC are present in DC8,9PC rich domains and vice versa. UV irradiation was found to affect the gel fluid transition of both DMPC and DC8,9PC rich regions, indicating the presence of polymeric units of DC8,9PC in both areas, A model explaining lipids rearrangement is proposed for this partially polymerized system.
Resumo:
Superoxide dismutases (SODs) are a crucial class of enzymes in the combat against intracellular free radical damage. They eliminate superoxide radicals by converting them into hydrogen peroxide and oxygen. In spite of their very different life cycles and infection strategies, the human parasites Plasmodium falciparum, Trypanosoma cruzi and Trypanosoma brucei are known to be sensitive to oxidative stress. Thus the parasite Fe-SODs have become attractive targets for novel drug development. Here we report the crystal structures of FeSODs from the trypanosomes T. brucei at 2.0 angstrom and T. cruzi at 1.9 angstrom resolution, and that from P. falciparum at a higher resolution (2.0 angstrom) to that previously reported. The homodimeric enzymes are compared to the related human MnSOD with particular attention to structural aspects which are relevant for drug design. Although the structures possess a very similar overall fold, differences between the enzymes at the entrance to the channel which leads to the active site could be identified. These lead to a slightly broader and more positively charged cavity in the parasite enzymes. Furthermore, a statistical coupling analysis (SCA) for the whole Fe/MnSOD family reveals different patterns of residue coupling for Mn and Fe SODs, as well as for the dimeric and tetrameric states. In both cases, the statistically coupled residues lie adjacent to the conserved core surrounding the metal center and may be expected to be responsible for its fine tuning, leading to metal ion specificity.
Structural and thermodynamic analysis of thrombin:suramin interaction in solution and crystal phases
Resumo:
Suramin is a hexasulfonated naphthylurea which has been recently characterized as a non-competitive inhibitor of human alpha-thrombin activity over fibrinogen, although its binding site and mode of interaction with the enzyme remain elusive. Here, we determined two X-ray structure of the thrombin: suramin complex, refined at 2.4 angstrom resolution. While a single thrombin: suramin complex was found in the asymmetric unit cell of the crystal, some of the crystallographic contacts with symmetrically related molecules are mediated by both the enzyme and the ligand. Molecular dynamics simulations with the 1:1 complex demonstrate a large rearrangement of suramin in the complex, but with the protein scaffold and the more extensive protein-ligand regions keep unchanged. Small-angle X-ray scattering measurements at high micromolar concentration demonstrate a suramin-induced dimerization of the enzyme. These data indicating a dissimilar binding mode in the monomeric and oligomeric states, with a monomeric, 1:1 complex to be more likely to exist at the thrombin physiological, nanomolar concentration range. Collectively, close understanding on the structural basis for interaction is given which might establish a basis for design of suramin analogues targeting thrombin. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
2-Benzoylpyridine-phenylhydrazone (H2BzPh), 2-benzoylpyridine-para-chloro-phenylhydrazone (H2BzpClPh), and 2-benzoylpyridine-para-nitro-phenyl (H2BzpNO(2)Ph) hydrazone were obtained and fully characterized, as well as their zinc(II) complexes [Zn(H2BzPh)Cl(2)] (1), [Zn(H2BzClPh)Cl(2)] (2) and [Zn(H2BzpNO(2)Ph)Cl(2)] (3). During the syntheses of complex 1 a second product crystallized, which was characterized as [Zn(2BzPh)(2)] (1a). Upon re-crystallization in 1: 9 DMSO: acetone conversion of 2 into [Zn(H2BzpClPh)Cl2] center dot H(2)O (2a) and of 3 into [Zn(2BzpNO(2)Ph)Cl(DMSO)] (3a) occurred. The crystal structures of 1a, 2a and 3a were determined. In 1a the two nearly perpendicular H2BzPh ligands give rise to a distorted octahedral environment around the metal. The 5-fold coordination around the metal is completed with two chloride ions in 2a and with one chloride and one oxygen atom from DMSO in 3a. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
To facilitate the design of laser host materials with optimized emission properties, detailed structural information at the atomic level is essential, regarding the local bonding environment of the active ions (distribution over distinct lattice sites) and their extent of local clustering as well as their population distribution over separate micro- or nanophases. The present study explores the potential of solid state NMR spectroscopy to provide such understanding for rare-earth doped lead lanthanum zirconate titanate (PLZT) ceramics. As the NMR signals of the paramagnetic dopant species cannot be observed directly, two complementary approaches are utilized: (1) direct observation of diamagnetic mimics using Sc-45 NMR and (2) study of the paramagnetic interaction of the constituent host lattice nuclei with the rare-earth dopant, using Pb-207 NMR lineshape analysis. Sc-45 MAS NMR spectra of scandium-doped PLZT samples unambiguously reveal scandium to be six-coordinated, suggesting that this rare-earth ion substitutes in the B site. Static Pb-207 spin echo NMR spectra of a series of Tm-doped PLZT samples reveal a clear influence of paramagnetic rare-earth dopant concentration on the NMR lineshape. In the latter case high-fidelity spectra can be obtained by spin echo mapping under systematic incrementation of the excitation frequency, benefiting from the signal-to-noise enhancement afforded by spin echo train Fourier transforms. Consistent with XRD data, the Pb-207 NMR lineshape analysis suggests that statistical incorporation into the PLZT lattice occurs at dopant levels of up to 1 wt.% Tm3+, while at higher levels the solubility limit is reached. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
The glycolytic enzyme glyceraldehyde-3 -phosphate dehydrogenase (GAPDH) is as an attractive target for the development of novel antitrypanosomatid agents. In the present work, comparative molecular field analysis and comparative molecular similarity index analysis were conducted on a large series of selective inhibitors of trypanosomatid GAPDH. Four statistically significant models were obtained (r(2) > 0.90 and q(2) > 0.70), indicating their predictive ability for untested compounds. The models were then used to predict the potency of an external test set, and the predicted values were in good agreement with the experimental results. Molecular modeling studies provided further insight into the structural basis for selective inhibition of trypanosomatid GAPDH.
Resumo:
A very unusual triple structural transition pattern below room temperature was observed for the antifilarial drug diethylcarbamazine citrate. Besides the first thermal, crystallographic, and vibrational investigations of this first-line drug used in clinical treatment for lymphatic filariasis, a noteworthy behavior with three structural transformations as a function of temperature was demonstrated by differential scanning calorimetry, Raman spectroscopy, and single-crystal X-ray diffractometry. Our X-ray data on single crystals allow for a complete featuring and understanding of all transitions, since the four structures associated with the three solid-solid phase transformations were accurately determined. Two of three structural transitions show an order-disorder mechanism and temperature hysteresis with exothermic peaks at 224 K (T(1)`) and 213 K (T(2)`) upon cooling and endothermic ones at 248 K (T(1)) and 226 K (T(2)) upon heating. The other transition occurs at 108 K (T(3)) and it is temperature-rate sensitive. Molecular displacements onto the (010) plane and conformational changes of the diethylcarbamazine backbone as a consequence of the C-H center dot center dot center dot N hydrogen bonding formation/cleavage between drug molecules explain the mechanism of the transitions at T(1)`/T(2). However, such changes are observed only on alternate columns of the drug intercalated by citrate chains, which leads to a doubling of the lattice period along the a axis of the 235 K structure with respect to the 150 and 293 K structures. At T(2)`/T(1), these structural alterations occur in all columns of the drug. At T(3), there is a rotation on the axis of the N-C bond between the carbamoyl moiety and an ethyl group of one crystallographically independent diethylcarbamazine molecule besides molecular shifts and other conformational alterations. The impact of this study is based on the fascinating finding in which the versatile capability of structural adaptation dependent on the thermal history was observed for a relatively simple organic salt, diethylcarbamazine citrate.
Resumo:
Selectivity plays a crucial role in the design of enzyme inhibitors as novel antiparasitic agents, particularly in cases where the target enzyme is also present in the human host. Purine nucleoside phosphorylase from Schistosoma mansoni (SmPNP) is an attractive target for the discovery of potential antischistosomal agents. In the present work, kinetic studies were carried out in order to determine the inhibitory potency, mode of action and enzyme selectivity of a series of inhibitors of SmPNP. In addition, crystallographic studies provided important structural insights for rational inhibitor design, revealing consistent structural differences in the binding mode of the inhibitors in the active sites of the SmPNP and human PNP (HsPNP) structures. The molecular information gathered in this work should be useful for future medicinal chemistry efforts in the design of new inhibitors of SmPNP having increased affinity and selectivity. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Alzheimer`s disease is an ultimately fatal neurodegenerative disease, and BACE-1 has become an attractive validated target for its therapy, with more than a hundred crystal structures deposited in the PDB. In the present study, we present a new methodology that integrates ligand-based methods with structural information derived from the receptor. 128 BACE-1 inhibitors recently disclosed by GlaxoSmithKline R&D were selected specifically because the crystal structures of 9 of these compounds complexed to BACE-1, as well as five closely related analogs, have been made available. A new fragment-guided approach was designed to incorporate this wealth of structural information into a CoMFA study, and the methodology was systematically compared to other popular approaches, such as docking, for generating a molecular alignment. The influence of the partial charges calculation method was also analyzed. Several consistent and predictive models are reported, including one with r (2) = 0.88, q (2) = 0.69 and r (pred) (2) = 0.72. The models obtained with the new methodology performed consistently better than those obtained by other methodologies, particularly in terms of external predictive power. The visual analyses of the contour maps in the context of the enzyme drew attention to a number of possible opportunities for the development of analogs with improved potency. These results suggest that 3D-QSAR studies may benefit from the additional structural information added by the presented methodology.