41 resultados para Strain-rate dependent behaviour
Resumo:
The electrochemical behaviour of a near-beta Ti-13Nb-13Zr alloy for the application as implants was investigated in various solutions. The electrolytes used were 0.9 wt% NaCl solution, Hanks` solution and a culture medium known as minimum essential medium (MEM) composed of salts, vitamins and amino acids, all at 37 degrees C. The electrochemical behaviour was investigated by the following electrochemical techniques: open circuit potential measurements as a function of time, electrochemical impedance spectroscopy (EIS) and determination of polarisation curves. The obtained results showed that the Ti alloy was passive in all electrolytes. The EIS results were analysed using an equivalent electrical circuit representing a duplex structure oxide layer, composed of an inner barrier layer, mainly responsible for the alloy corrosion resistance, and an outer and porous layer that has been associated to osteointegration ability. The properties of both layers were dependent on the electrolyte used. The results suggested that the thickest porous layer is formed in the MEM solution whereas the impedance of the barrier layer formed in this solution was the lowest among the electrolytes used. The polarisation curves showed a current increase at potentials around 1300 mV versus saturated calomel electrode (SCE), and this increase was also dependent on the electrolyte used. The highest increase in current density was also associated to the MEM solution suggesting that this is the most aggressive electrolyte to the Ti alloy among the three tested solutions.
Resumo:
Generalist pathogens frequently exist as a complex of genetically differentiated strains, which can differ in virulence and transmissibility. A description of the extent to which strain variability mediates host species competence is needed to understand disease dynamics for systems with both host and pathogen strain diversity. This study tested the hypothesis that strain-specific variation of a generalist vector-borne plant pathogen, Xylella fastidiosa, affects disease severity in alfalfa (Medicago sativa) and competence of this crop as a reservoir host. Alfalfa seedlings were inoculated with one of 23 X. fastidiosa isolates collected from different hosts, eight identified as belonging to an almond strain, and the remainder from a grape strain. Pathogen population, symptom severity and infection incidence were compared over five successive harvests. Infected plant size, measured mainly by plant height, internode length and above ground biomass, was reduced up to 50% compared to buffer-inoculated controls, and more severe symptoms were observed at later harvests and for higher pathogen populations. Grape isolates had higher bacterial populations within alfalfa than almond isolates. In addition, infection with grape isolates resulted in more severe alfalfa stunting than that caused by almond isolates. Moreover, there was a strong positive relationship between isolate multiplication rate and both symptom severity and infection persistence (i.e. maintenance of chronic infection within host). Isolates with low initial populations had low incidence at the final harvest, with one isolate dying out altogether. The results showed that X. fastidiosa-genetic diversity contributed to variation in alfalfa disease severity. The results also suggest that pathogen strain may mediate host competence via differences in bacterial population density and persistence.
Resumo:
Tomato high pigment (hp) mutants represent an interesting horticultural resource due to their enhanced accumulation of carotenoids, flavonoids and vitamin C. Since hp mutants are known for their exaggerated light responses, the molecules accumulated are likely to be antioxidants, recruited to deal with light and others stresses. Further phenotypes displayed by hp mutations are reduced growth and an apparent disturbance in water loss. Here, we examined the impact of the hp1 mutation and its near isogenic line cv Micro-Tom (MT) on stomatal conductance (gs), transpiration (E), CO(2) assimilation (A) and water use efficiency (WUE). Detached hp1 leaves lost water more rapidly than control leaves, but this behaviour was reversed by exogenous abscisic acid (ABA), indicating the ability of hp1 to respond to this hormone. Although attached hp1 leaves had enhanced gs, E and A compared to control leaves, genotypic differences were lost when water was withheld. Both instantaneous leaf-level WUE and long-term whole plant WUE did not differ between hp1 and MT. Our results indicate a link between exaggerated light response and water loss in hp1, which has important implications for the use of this mutant in both basic and horticultural research.
Resumo:
Pseudomonas putida strain P9 is a novel competent endophyte from potato. P9 causes cultivar-dependent suppression of Phytophthora infestans. Colonization of the rhizoplane and endosphere of potato plants by P9 and its rifampin-resistant derivative P9R was studied. The purposes of this work were to follow the fate of P9 inside growing potato plants and to establish its effect on associated microbial communities. The effects of P9 and P9R inoculation were studied in two separate experiments. The roots of transplants of three different cultivars of potato were dipped in suspensions of P9 or P9R cells, and the plants were planted in soil. The fate of both strains was followed by examining colony growth and by performing PCR-denaturing gradient gel electrophoresis (PCR-DGGE). Colonies of both strains were recovered from rhizoplane and endosphere samples of all three cultivars at two growth stages. A conspicuous band, representing P9 and P9R, was found in all Pseudomonas PCR-DGGE fingerprints for treated plants. The numbers of P9R CFU and the P9R-specific band intensities for the different replicate samples were positively correlated, as determined by linear regression analysis. The effects of plant growth stage, genotype, and the presence of P9R on associated microbial communities were examined by multivariate and unweighted-pair group method with arithmetic mean cluster analyses of PCR-DGGE fingerprints. The presence of strain P9R had an effect on bacterial groups identified as Pseudomonas azotoformans, Pseudomonas veronii, and Pseudomonas syringae. In conclusion, strain P9 is an avid colonizer of potato plants, competing with microbial populations indigenous to the potato phytosphere. Bacterization with a biocontrol agent has an important and previously unexplored effect on plant-associated communities.
Resumo:
This study evaluated the influence of gastrointestinal environmental factors (pH, digestive enzymes, food components, medicaments) on the survival of Lactobacillus casei Shirota and Lactobacillus casei LC01, using a semi-dynamic in vitro model that simulates the transit of microorganisms through the human GIT. The strains were first exposed to different simulated gastric juices for different periods of time (0, 30, 60 and 120 min), and then to simulated intestinal fluids for zero, 120, 180 and 240 min, in a step-wise format. The number of viable cells was determined after each step. The influence of food residues (skim milk) in the fluids and resistance to medicaments commonly used for varied therapeutic purposes (analgesics, antiarrhythmics, antibiotics, antihistaminics, proton pump inhibitors, etc.) were also evaluated. Results indicated that survival of both cultures was pH and time dependent, and digestive enzymes had little influence. Milk components presented a protective effect, and medicaments, especially anti-inflammatory drugs, influenced markedly the viability of the probiotic cultures, indicating that the beneficial effects of the two probiotic cultures to health are dependent of environmental factors encountered in the human gastrointestinal tract.
Resumo:
Calcineurin plays an important role in the control of cell morphology and virulence in fungi. Calcineurin is a serine/threonine-specific protein phosphatase heterodimer consisting of a catalytic subunit A and a regulatory subunit B. A mutant of Aspergillus fumigatus lacking the calcineurin A (calA) catalytic subunit exhibited defective hyphal morphology related to apical extension and branching growth, which resulted in drastically decreased filamentation. Here, we investigated which pathways are influenced by A. fumigatus calcineurin during proliferation by comparatively determining the transcriptional profile of A. fumigatus wild type and Delta calA mutant strains. Our results showed that the mitochondrial copy number is reduced in the Delta calA mutant strain, and the mutant has increased alternative oxidase (aoxA) mRNA accumulation and activity. Furthermore, we identified four genes that encode transcription factors that have increased mRNA expression in the Delta calA mutant. Deletion mutants for these transcription factors had reduced susceptibility to itraconazole, caspofungin, and sodium dodecyl sulfate (SDS). (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
This article makes a connection between Lucas` (1978) asset pricing model and the macroeconomic dynamics for some selected countries. Both the relative risk aversion and the impatience for postponing consumption by synthesizing the investor behaviour can help to understand some key macroeconomic issues across countries, such as the savings decision and the real interest rate. I find that the government consumption makes worse the so-called `equity premium-interest rate puzzle`. The first root of the quadratic function for explaining the real interest rate can produce this puzzle, but not the second root. Thus, Mehra and Prescott (1985) identified only one possible solution.
Resumo:
Mice expressing human cholesteryl ester transfer protein (huCETP) are more resistant to Escherichia coli bacterial wall LIPS because death rates 5 days after intraperitoneal inoculation of LIPS were higher in wild-type than in huCETP(+/-) mice, whereas all huCETP(+/+) mice remained alive. After LIPS inoculation, plasma concentrations of TNF-alpha and IL-6 increased less in huCETP(+/+) than in wild-type mice. LPS in vitro elicited lower TNF-alpha production by CETP expressing than by wild-type macrophages. In addition, TNF-alpha production by RAW 264.7 murine macrophages increased on incubation with LPS but decreased in a dose-dependent manner when human CETP was added to the medium. Human CETP in vitro enhanced the LIPS binding to plasma high-density lipoprotein/low-density lipoprotein. The liver uptake of intravenous infused C-14-LPS from Salmonella typhimurium was greater in huCETP(+/+) than in wild-type mice. Present data indicate for the first time that CETP is an endogenous component involved in the first line of defense against an exacerbated production of proinflammatory mediators.
Resumo:
Objective. To evaluate the beneficial effect of antimalarial treatment on lupus survival in a large, multiethnic, international longitudinal inception cohort. Methods. Socioeconomic and demographic characteristics, clinical manifestations, classification criteria, laboratory findings, and treatment variables were examined in patients with systemic lupus erythematosus (SLE) from the Grupo Latino Americano de Estudio del Lupus Eritematoso (GLADEL) cohort. The diagnosis of SLE, according to the American College of Rheumatology criteria, was assessed within 2 years of cohort entry. Cause of death was classified as active disease, infection, cardiovascular complications, thrombosis, malignancy, or other cause. Patients were subdivided by antimalarial use, grouped according to those who had received antimalarial drugs for at least 6 consecutive months (user) and those who had received antimalarial drugs for <6 consecutive months or who had never received antimalarial drugs (nonuser). Results. Of the 1,480 patients included in the GLADEL cohort, 1,141 (77%) were considered antimalarial users, with a mean duration of drug exposure of 48.5 months (range 6-98 months). Death occurred in 89 patients (6.0%). A lower mortality rate was observed in antimalarial users compared with nonusers (4.4% versus 11.5%; P < 0.001). Seventy patients (6.1%) had received antimalarial drugs for 6-11 months, 146 (12.8%) for 1-2 years, and 925 (81.1%) for >2 years. Mortality rates among users by duration of antimalarial treatment (per 1,000 person-months of followup) were 3.85 (95% confidence interval [95% CI] 1.41-8.37), 2.7 (95% CI 1.41-4.76), and 0.54 (95% CI 0.37-0.77), respectively, while for nonusers, the mortality rate was 3.07 (95% CI 2.18-4.20) (P for trend < 0.001). After adjustment for potential confounders in a Cox regression model, antimalarial use was associated with a 38% reduction in the mortality rate (hazard ratio 0.62, 95% CI 0.39-0.99). Conclusion. Antimalarial drugs were shown to have a protective effect, possibly in a time-dependent manner, on SLE survival. These results suggest that the use of antimalarial treatment should be recommended for patients with lupus.
Resumo:
Background Suicide is a leading cause of death worldwide, but the precise effect of childhood adversities as risk factors for the onset and persistence of suicidal behaviour (suicide ideation, plans and attempts) are not well understood. Aims To examine the associations between childhood adversities as risk factors for the onset and persistence of suicidal behaviour across 21 countries worldwide. Method Respondents from nationally representative samples (n = 55 299) were interviewed regarding childhood adversities that occurred before the age of 18 years and lifetime suicidal behaviour. Results Childhood adversities were associated with an increased risk of suicide attempt and ideation in both bivariate and multivariate models (odds ratio range 1.2-5.7). The risk increased with the number of adversities experienced, but at a decreasing rate. Sexual and physical abuse were consistently the strongest risk factors for both the onset and persistence of suicidal behaviour, especially during adolescence. Associations remained similar after additional adjustment for respondents` lifetime mental disorder status. Conclusions Childhood adversities (especially intrusive or aggressive adversities) are powerful predictors of the onset and persistence of suicidal behaviours.
Resumo:
There are evidences that targeting IL-18 might be beneficial to inhibit inflammatory symptoms, including hypernociception (decrease in nociceptive threshold). The mechanism of IL-18 mechanical hypernociception depends on endothelin in rats and mice. However, the role of IL-18 in overt pain-like behaviour remains undetermined. Therefore, we addressed the role of IL-18 in writhing response induced by intraperitoneal (i.p.) injection of phenyl-p-benzoquinone (PBQ) and acetic acid in mice. Firstly, it was detected that PBQ and acetic acid i.p. injection induced a dose-dependent number of writhes in Balb/c mice. Subsequently, it was observed that the PBQ- but not the acetic acid-induced writhes were diminished in IL-18 deficient ((-/-)) mice. Therefore, considering that IFN-gamma, endothelin and prostanoids mediate IL-18-induced mechanical hypernociception, we also investigated the role of these mediators in the same model of writhing response in which IL-18 participates. It was noticed that PBQ-induced writhes were diminished in IFN-gamma(-/-) mice and by the treatment with bosentan (mixed enclothelin ETA/ETB receptor antagonist), BQ 123 (cyclo[DTrp-DAsp-Pro-DVal-Leu], selective enclothelin ETA receptor antagonist), BQ 788 (N-cys-2,6-dimethylpiperidinocarbonyl-L-methylleucyl-D-1 -methoxycarboyl-D-norleucine, selective endothelin ETB receptor antagonist) or indomethacin (cycloxigenase inhibitor). Thus, IL-18, IFN-gamma, endothelin acting on endothelin ETA and ETB receptors, and prostanoids mediate PBQ-induced writhing response in mice. To conclude, these results further advance the understanding of the physiopathology of overt pain-like behaviour, and suggest for the first time a role for IL-18 in writhing response in mice. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Background and purpose: D-Fructose-1,6-bisphosphate (FBP) is an intermediate in the glycolytic pathway, exerting pharmacological actions on inflammation by inhibiting cytokine production or interfering with adenosine production. Here, the possible antinociceptive effect of FBP and its mechanism of action in the carrageenin paw inflammation model in mice were addressed, focusing on the two mechanisms described above. Experimental approach: Mechanical hyperalgesia (decrease in the nociceptive threshold) was evaluated by the electronic pressure-metre test; cytokine levels were measured by elisa and adenosine was determined by high performance liquid chromatography. Key results: Pretreatment of mice with FBP reduced hyperalgesia induced by intraplantar injection of carrageenin (up to 54%), tumour necrosis factor alpha (40%), interleukin-1 beta (46%), CXCL1 (33%), prostaglandin E(2) (41%) or dopamine (55%). However, FBP treatment did not alter carrageenin-induced cytokine (tumour necrosis factor alpha and interleukin-1 beta) or chemokine (CXCL1) production. On the other hand, the antinociceptive effect of FBP was prevented by systemic and intraplantar treatment with an adenosine A(1) receptor antagonist (8-cyclopentyl-1,3-dipropylxanthine), suggesting that the FBP effect is mediated by peripheral adenosine acting on A(1) receptors. Giving FBP to mice increased adenosine levels in plasma, and adenosine treatment of paw inflammation presented a similar antinociceptive mechanism to that of FBP. Conclusions and implications: In addition to anti-inflammatory action, FBP also presents an antinociceptive effect upon inflammatory hyperalgesia. Its mechanism of action seems dependent on adenosine production but not on modulation of hyperalgesic cytokine/chemokine production. In turn, adenosine acts peripherally on its A(1) receptor inhibiting hyperalgesia. FBP may have possible therapeutic applications in reducing inflammatory pain.
Resumo:
The antimycotic activity of fatty acids has long been known, and their presence in human skin and sweat appears to protect the host against superficial mycoses. Undecanoic acid is a medium-chain fatty acid that has been used in the treatment of dermatophytoses in humans. In this study, we selected one Trichophyton rubrum undecanoic acid-resistant strain that showed a marked reduction in its capacity to grow on human nail fragments, which correlated with the reduced activity of secreted keratinolytic proteases. Moreover, the susceptibility of T. rubrum to undecanoic acid is also dependent on the carbon source utilized by both control and resistant strains. The growth of the control strain was strongly inhibited by undecanoic acid in Sabouraud medium or in cultures supplemented with low-fat milk, whereas it was ineffective when the cultures were supplemented with Tween 20 or keratin as the carbon source, suggesting that nutrient conditions are crucial in establishing a susceptibility to antifungal drugs, which is helpful for the isolation and characterization of resistant strains, and in the screening for new antifungal drugs.
Resumo:
We consider two viral strains competing against each other within individual hosts (at cellular level) and at population level (for infecting hosts) by studying two cases. In the first case, the strains do not mutate into each other. In this case, we found that each individual in the population can be infected by only one strain and that co-existence in the population is possible only when the strain that has the greater basic intracellular reproduction number, R (0c) , has the smaller population number R (0p) . Treatment against the one strain shifts the population equilibrium toward the other strain in a complicated way (see Appendix B). In the second case, we assume that the strain that has the greater intracellular number R (0c) can mutate into the other strain. In this case, individual hosts can be simultaneously infected by both strains (co-existence within the host). Treatment shifts the prevalence of the two strains within the hosts, depending on the mortality induced by the treatment, which is, in turn, dependent upon the doses given to each individual. The relative proportions of the strains at the population level, under treatment, depend both on the relative proportions within the hosts (which is determined by the dosage of treatment) and on the number of individuals treated per unit time, that is, the rate of treatment. Implications for cases of real diseases are briefly discussed.
Resumo:
Poly(L-lactic acid) (PLA) is a polymer of great technological interest, whose excellent mechanical properties, thermal plasticity and bioresorbability render it potentially useful for environmental applications, as a biodegradable plastic and as a biocompatible material in biomedicine. The interactions between an implant material surface and host cells play central roles in the integration, biological performance and clinical success of implanted biomedical devices. Osteoblasts from human alveolar bone were chosen to investigate the cell behaviour when in contact with PLA discs. Cell morphology and adhesion through osteopontin (OPN) and fibronectin (FN) expression were evaluated in the initial osteogenesis, as well as cell proliferation, alkaline phosphatase activity and bone nodule formation. It was shown that the polymer favoured cell attachment. Cell proliferation increased until 21 days but in a smaller rate when compared to the control group. On the other hand, ALP activity and bone mineralization were not enhanced by the polymer. It is suggested that this polymer favours cell adhesion in the early osteogenesis in vitro, but it does not enhance differentiation and mineralization. (C) Koninklijke Brill NV, Leiden, 2009