177 resultados para Stimulated Raman scattering
Resumo:
CaNb(2)O(6) single crystal fibers were grown by the laser-heated pedestal growth technique, directly from the starting reagents. Optically transparent fibers were obtained in the form of rods with elliptical cross-section, free from cracks, impurities, and secondary phases, with an average diameter of 0.4 mm and about 20 mm of length. The fibers grew within the orthorhombic Pbcn columbite structure, with the growth axis nearly parallel to the crystallographic a-direction. The parameters b and c were parallel to the shorter and larger ellipsis axes. A special setup using a microscope was developed to obtain the far-infrared reflectivity spectra of these micrometer-sized fibers, allowing the identification and assignment of 34 of the 38 polar phonons foreseen for the material. From these phonons, the intrinsic dielectric constant ( of 185 THz) could be estimated, showing the potential of the material for applications in microwave circuitry. These results, along with previous polarized Raman data (Cryst. Growth Des. 2010, 10, 1569), allow us to present a comprehensive set of optical phonon modes and to discuss the potential use of designed CaNb(2)O(6) microcrystals in compact optical devices.
Resumo:
The effects of near-IR (NIR) laser power over the Raman spectra of poly(aniline) emeraldine salt (PANIES) and base (PANI-EB) were investigated. The reasons for the existence of several bands from 1324 to 1500 cm-1 in the Raman spectra of poly(aniline) obtained at NIR region were also studied. The bands from 1324 to 1375 cm-` were associated to vC-N of polarons with different conjugation lengths and the bands from 1450 to 1500 cm-1 in Raman spectra of PANI emeraldine and pernigraniline base forms were correlated to vC=N modes associated with quinoid units having different conjugation lengths. The increase of laser power at 1064.0 run causes the deprotonation of PANI-ES and the formation of cross-linking segments having phenazine and/or oxazine rings. For PANI-EB only a small spectral change is observed when the laser power is increased, owing to the low absorption of this form in the NIR region. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
Raman and IR experiments have been carried out on formamide (FA) and pyridine (Py) mixtures at different compositions. The appearance of a new Raman band at 996 cm(-1) (nu(1) region of Py), whose intensity depends on the FA concentration, is assigned to an FA: Py adduct and this result is in excellent agreement with those of other authors who employed noisy light-based coherent Raman scattering spectroscopy (I((2)) CARS). Another band at 1587 cm(-1) (nu(8) region of Py) has been observed for the first time by using Raman and IR spectroscopies. Its intensity shows the same dependence on the FA concentration and this fact allows us to also attribute it to an FA: Py adduct. The good relationship between the Raman and IR data demonstrates the potential of the vibrational spectroscopy for this kind of study. Owing to higher absolute Raman scattering cross section, the nu(1) region of Py has been chosen for the quantitative analysis and a stoichiometry of 1 : 1 FA: Py is reported. The experimental data are very well supported by the density functional theory (OFT) calculation, which was employed for the first time to the present system. Furthermore, the actual investigation shows an excellent agreement with those reported from computational calculations for similar systems. A comparison with our previous studies confirms that: the solvent dielectric constant determines the stoichiometry of a given Lewis acid-base adduct in the infinite dilution limit. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Iodine vapor is a very suitable substance to learn about molecular energy levels and transitions, and to introduce spectroscopic techniques. As a diatomic molecule its spectra are relatively simple and allow straightforward treatment of the data leading to the potential energy curves and to quantum mechanics concepts. The overtone bands, in the resonance Raman scattering, and the band progressions, in the electronic spectra, play an important role in the calculation of the Morse potential curves for the fundamental and excited electronic state. A weaker chemical bond in the electronic excited state, compared to the fundamental state, is evidenced by the increase in the equilibrium interatomic distance. The resonance Raman scattering of I2 is highlighted due to its importance for obtaining the anharmonicity constant in the fundamental electronic state.
Resumo:
ZrO(2)-10, 12 and 14 mol% Sc(2)O(3) nanopowders were prepared by using a nitrate-lysine gel-combustion synthesis. These materials were studied by synchrotron X-ray powder diffraction (SXPD) and Raman spectroscopy after calcination at different temperatures from 650 to 1200 degrees C, which led to samples with different average crystallite sizes, up to about 100 nm. The results from SXPD and Raman analyses indicate that, depending on Sc(2)O(3) content, the metastable t ''-form of the tetragonal phase or the cubic phase are fully retained at room temperature in nanocrystalline powders, provided an average crystallite sizes lower than similar to 30 nm. By contrast, powders with larger average crystallite sizes exhibit the stable rhombohedral, beta and gamma, phases and do not retain or very partially retain the metastable t '' and cubic ones.
Resumo:
Light absorption of alpha-glycine crystals grown by slow evaporation at room temperature was measured, indicating a 5.11 +/- 0.02 eV energy band gap. Structural, electronic, and optical absorption properties of alpha-glycine crystals were obtained by first-principles quantum mechanical calculations using density functional theory within the generalized gradient approximation in order to understand this result. To take into account the contribution of core electrons, ultrasoft and norm-conserving pseudopotentials, as well as an all electron approach were considered to compute the electronic density of states and band structure of alpha-glycine crystals. They exhibit three indirect energy band gaps and one direct Gamma-Gamma energy gap around 4.95 eV. The optical absorption related to transitions between the top of the valence band and the bottom of the conduction band involves O 2p valence states and C, O 2p conduction states, with the carboxyl group contributing significantly to the origin of the energy band gap. The calculated optical absorption is highly dependent on the polarization of the incident radiation due to the spatial arrangement of the dipolar glycine molecules; in the case of a polycrystalline sample, the first-principles calculated optical absorption is in good agreement with the measurement when a rigid energy shift is applied.
Resumo:
The structural, dielectric, and vibrational properties of pure and rare earth (RE)-doped Ba(0.77) Ca(0.23)TiO(3) (BCT23; RE = Nd, Sm, Pr, Yb) ceramics obtained via solid-state reaction were investigated. The pure and RE-doped BCT23 ceramics sintered at 1450 degrees C in air for 4 h showed a dense microstructure in all ceramics. The use of RE ions as dopants introduced lattice-parameter changes that manifested in the reduction of the volume of the unit cell. RE-doped BCT23 samples exhibit a more homogenous microstructure due to the absence of a Ti-rich phase in the grain boundaries as demonstrated by scanning electron microscopy imaging. The incorporation of REs led to perturbations of the local symmetry of TiO(6) octahedra and the creation of a new Raman mode. The results of Raman scattering measurements indicated that the Curie temperature of the ferroelectric phase transition depends on the RE ion and ion content, with the Curie temperature shifting toward lower values as the RE content increases, with the exception of Yb(3+) doping, which did not affect the ferroelectric phase transition temperature. The phase transition behavior is explained using the standard soft mode model. Electronic paramagnetic resonance measurements showed the existence of Ti vacancies in the structure of RE-doped BCT23. Defects are created via charge compensation mechanisms due to the incorporation of elements with a different valence state relative to the ions of the pure BCT23 host. It is concluded that the Ti vacancies are responsible for the activation of the Raman mode at 840 cm(-1), which is in agreement with lattice dynamics calculations. (c) 2011 American Institute of Physics. [doi:10.1063/1.3594710]
Contrasting LH-HH subband splitting of strained quantum wells grown along [001] and [113] directions
Resumo:
Contrasting responses for the temperature tuning of the electronic structure in semiconductor quantum wells are discussed for heterolayered structures grown along (001) and (113) directions. The temperature affects the strain modulation of the deformation potentials and the effective optical gap is tuned along with the intersub-band splitting in the valence band. A multiband theoretical model accounts for the characterization of the electronic structure, highlighting the main qualitative and quantitative differences between the two systems under study. The microscopic source of strain fields and the detailed mapping of their distribution are provided by a simulation using classical molecular-dynamics technics.
Resumo:
The combination of metallic phthalocyanines (MPcs) and biomolecules has been explored in the literature either as mimetic systems to investigate molecular interactions or as supporting layers to immobilize biomolecules. Here, Langmuir-Blodgett (LB) films containing the phospholipid dimyristoyl phosphatidic acid (DMPA) mixed either with iron phthalocyanine (FePc) or with lutetium bisphthalocyanine (LuPc(2)) were applied as ITO modified-electrodes in the detection of catechol using cyclic voltammetry. The mixed Langmuir films of FePc + DMPA and LuPc(2) + DMPA displayed surface-pressure isotherms with no evidence of molecular-level interactions. The Fourier Transform Infrared (FTIR) spectra of the multilayer LB films confirmed the lack of interaction between the components. The DMPA and the FePc molecules were found to be oriented perpendicularly to the substrate, while LuPc(2) molecules were randomly organized. The phospholipid matrix induced a remarkable electrocatalytic effect on the phthalocyanines; as a result the mixed LB films deposited on ITO could be used to detect catechol with detection limits of 4.30 x 10(-7) and 3.34 x 10(-7) M for FePc + DMPA and LuPc(2) + DMPA, respectively. Results from kinetics experiments revealed that ion diffusion dominated the response of the modified electrodes. The sensitivity was comparable to that of other non-enzymatic sensors, which is sufficient to detect catechol in the food industry. The higher stability of the electrochemical response of the LB films and the ability to control the molecular architecture are promising for further studies with incorporation of biomolecules.
Resumo:
The transition of plasmons from propagating to localized state was studied in disordered systems formed in GaAs/AlGaAs superlattices by impurities and by artificial random potential. Both the localization length and the linewidth of plasmons were measured by Raman scattering. The vanishing dependence of the plasmon linewidth on the disorder strength was shown to be a manifestation of the strong plasmon localization. The theoretical approach based on representation of the plasmon wave function in a Gaussian form well accounted for by the obtained experimental data.
Resumo:
Elastic properties of freestanding porous silicon layers fabricated by electrochemical anodization were studied by Raman scattering. Different anodization currents provided different degrees of porosity in the nanometer scale. Raman lines corresponding to the longitudinal optical phonons of crystalline and amorphous phases were observed. The amorphous volume fraction increased and the phonon frequencies for both phases decreased with increasing porosity. A strain distribution model is proposed whose fit to the experimental results indicates that the increasing nanoscale porosity causes strain relaxation in the amorphous domains and strain buildup in the crystalline ones. The present analysis has significant implications on the estimation of the crystalline Si domain's characteristic size from Raman scattering data. (C) 2009 The Electrochemical Society. [DOI: 10.1149/1.3225832] All rights reserved.
Resumo:
This work reports on the magnetic properties of Ge(100-x)Mn(x) (x=0-24 at. %) films prepared by cosputtering a Ge+Mn target and submitted to cumulative thermal annealing treatments up to 500 degrees C. Both as-deposited and annealed films were investigated by means of compositional analysis, Raman scattering spectroscopy, magnetic force microscopy, superconducting quantum interference device magnetometry, and electrical resistivity measurements. All as-deposited films (either pure or containing Mn) exhibit an amorphous structure, which changes to crystalline as the annealing treatments are performed at increasing temperatures. In fact, the magnetic properties of the present Ge(100-x)Mn(x) films are very sensitive to the Mn content and whether their atomic structure is amorphous or crystalline. More specifically: whereas the amorphous Ge(100-x)Mn(x) films (with high x) present a characteristic spin glass behavior at low temperature; after crystallization, the films (with moderate Mn contents) are ferromagnetic at room temperature. Moreover, the magnetic behavior of the films scales with their Mn concentration and tends to be more pronounced after crystallization. Finally, the semiconducting behavior of the films, experienced by previous optical studies, was confirmed through electrical measurements, which also indicate the dependence of the resistivity with the atomic composition of the films. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3520661]
Resumo:
The emission energy dependence of the photoluminescence (PL) decay rate at room temperature has been studied in Si nanoclusters (Si-ncl) embedded in Si oxide matrices obtained by thermal annealing of substoichiometric Si oxide layers Si(y)O(1-y), y=(0.36,0.39,0.42), at various annealing temperatures (T(a)) and gas atmospheres. Raman scattering measurements give evidence for the formation of amorphous Si-ncl at T(a)=900 degrees C and of crystalline Si-ncl for T(a)=1000 degrees C and 1100 degrees C. For T(a)=1100 degrees C, the energy dispersion of the PL decay rate does not depend on sample fabrication conditions and follows previously reported behavior. For lower T(a), the rate becomes dependent on fabrication conditions and less energy dispersive. The effects are attributed to exciton localization and decoherence leading to the suppression of quantum confinement and the enhancement of nonradiative recombination in disordered and amorphous Si-ncl. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3457900]
Resumo:
This work reports on the crystallization of amorphous silicon (a-Si) films doped with 1 at. % of nickel. The films, with thicknesses ranging from 10 to 3000 nm, were deposited using the cosputtering method onto crystalline quartz substrates. In order to investigate the crystallization mechanism in detail, a series of undoped a-Si films prepared under the same deposition conditions were also studied. After deposition, all a-Si films were submitted to isochronal thermal annealing treatments up to 1000 degrees C and analyzed by Raman scattering spectroscopy. Based on the present experimental results, it is possible to state that (a) when compared to the undoped a-Si films, those containing 1 at. % of Ni crystallize at temperatures similar to 100 degrees C lower, and that (b) the film thickness influences the temperature of crystallization that, in principle, tends to be lower in films thinner than 1000 nm. The possible reasons associated to these experimental observations are presented and discussed in view of some experimental and thermodynamic aspects involved in the formation of ordered Si-Si bonds and in the development of Ni-silicide phases. (c) 2008 American Institute of Physics.
Resumo:
Short-time dynamics of ionic liquids has been investigated by low-frequency Raman spectroscopy (4 < omega < 100 cm(-1)) within the supercooled liquid range. Raman spectra are reported for ionic liquids with the same anion, bis(trifluoromethylsulfonyl)imide, and different cations: 1-butyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium, 1-butyl-1-methylpiperidinium, trimethylbutylammonium, and tributylmethylammonium. It is shown that low-frequency Raman spectroscopy provides similar results as optical Kerr effect (OKE) spectroscopy, which has been used to study intermolecular vibrations in ionic liquids. The comparison of ionic liquids containing aromatic and non-aromatic cations identifies the characteristic feature in Raman spectra usually assigned to librational motion of the imidazolium ring. The strength of the fast relaxations (quasi-elastic scattering, QES) and the intermolecular vibrational contribution (boson peak) of ionic liquids with non-aromatic cations are significantly lower than imidazolium ionic liquids. A correlation length assigned to the boson peak vibrations was estimated from the frequency of the maximum of the boson peak and experimental data of sound velocity. The correlation length related to the boson peak (similar to 19 angstrom) does not change with the length of the alkyl chain in imidazolium cations, in contrast to the position of the first-sharp diffraction peak observed in neutron and X-ray scattering measurements of ionic liquids. The rate of change of the QES intensity in the supercooled liquid range is compared with data of excess entropy, free volume, and mean-squared displacement recently reported for ionic liquids. The temperature dependence of the QES intensity in ionic liquids illustrates relationships between short-time dynamics and long-time structural relaxation that have been proposed for glass-forming liquids. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3604533]