24 resultados para Steingrímur Jónsson, Bishop, 1769-1845.
Resumo:
Proteins are subject to modification by reactive oxygen species (ROS), and oxidation of specific amino acid residues can impair their biological function, leading to an alteration in cellular homeostasis. Sulfur-containing amino acids as methionine are the most vulnerable to oxidation by ROS, resulting in the formation of methionine sulfoxide [Met(O)] residues. This modification can be repaired by methionine sulfoxide reductases (Msr). Two distinct classes of these enzymes, MsrA and MsrB, which selectively reduce the two methionine sulfoxide epimers, methionine-S-sulfoxide and methionine-R-sulfoxide, respectively, are found in virtually all organisms. Here. we describe the homologs of methionine sulfoxide reductases, msrA and msrB, in the filamentous fungus Aspergillus nidulans. Both single and double inactivation mutants were viable, but more sensitive to oxidative stress agents as hydrogen peroxide, paraquat, and ultraviolet light. These strains also accumulated more carbonylated proteins when exposed to hydrogen peroxide indicating that MsrA and MsrB are active players in the protection of the cellular proteins from oxidative stress damage. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The identification and annotation of protein-coding genes is one of the primary goals of whole-genome sequencing projects, and the accuracy of predicting the primary protein products of gene expression is vital to the interpretation of the available data and the design of downstream functional applications. Nevertheless, the comprehensive annotation of eukaryotic genomes remains a considerable challenge. Many genomes submitted to public databases, including those of major model organisms, contain significant numbers of wrong and incomplete gene predictions. We present a community-based reannotation of the Aspergillus nidulans genome with the primary goal of increasing the number and quality of protein functional assignments through the careful review of experts in the field of fungal biology. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
We show indirect evidences for the possible involvement of NIT-2-like binding motifs in transcription modulation of the PbGP43 gene, which codes for an important antigen from the human fungal pathogen Paracoccidioides brasiliensis. This investigation was motivated by the finding of 23 NIT2-like sites within the proximal -2047 nucleotides of the PbGP43 5` intergenic region from the Pb339 isolate. They compose four clusters, two of them identical. We found four NIT2-containing probes that were positive in electrophoretic mobility shift assays and further analyzed them. PbGP43 could be modulated by nitrogen primary sources in Pb339, Pb3 and Pb18 isolates, as observed by reverse transcription (RT) real time-PCR. Gene reporter assays conducted in Aspergillus nidulans suggested that the minimal fragment responsible for nitrogen modulation lies within -480 bp of the PbGP43 gene. This is the first report on PbGP43 transcription modulation in response to nitrogen primary sources, which might help understand its regulation during infection. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
SHOX haploinsufficiency causes a wide spectrum of short stature phenotypes, such as Leri-Weill dyschondrosteosis (LWD) and disproportionate short stature (DSS). SHOX deletions are responsible for approximately two thirds of isolated haploinsufficiency; therefore, it is important to determine the most appropriate methodology for detection of gene deletion. In this study, three methodologies for the detection of SHOX deletions were compared: the fluorescence in situ hybridization (FISH), microsatellite analysis and multiplex ligation-dependent probe amplification (MLPA). Forty-four patients (8 LWD and 36 DSS) were analyzed. The cosmid LLNOYCO3`M`34F5 was used as a probe for the FISH analysis and microsatellite analysis were performed using three intragenic microsatellite markers. MLPA was performed using commercial kits. Twelve patients (8 LWD and 4 DSS) had deletions in SHOX area detected by MLPA and 2 patients generated discordant results with the other methodologies. In the first case, the deletion was not detected by FISH. In the second case, both FISH and microsatellite analyses were unable to identify the intragenic deletion. In conclusion, MLPA was more sensitive, less expensive and less laborious; therefore, it should be used as the initial molecular method for the detection of SHOX gene deletion. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
Background. Chagas disease is caused by the protozoan parasite Trypanosoma cruzi. Among T. cruzi-infected individuals, only a subgroup develops severe chronic Chagas cardiomyopathy (CCC); the majority remain asymptomatic. T. cruzi displays numerous ligands for the Toll-like receptors (TLRs), which are an important component of innate immunity that lead to the transcription of proinflammatory cytokines by nuclear factor-kappa B. Because proinflammatory cytokines play an important role in CCC, we hypothesized that single-nucleotide polymorphisms (SNPs) in the genes that encode proteins in the TLR pathway could explain differential susceptibility to CCC among T. cruzi-infected individuals. Methods. For 169 patients with CCC and 76 T. cruzi-infected, asymptomatic individuals, we analyzed SNPs by use of polymerase chain reaction-restriction fragment length polymorphism analysis for the genes TLR1, TLR2, TLR4, TLR5, TLR9, and MAL/TIRAP, which encodes an adaptor protein. Results. Heterozygous carriers of the MAL/TIRAP variant S180L were more prevalent in the asymptomatic group (24 [32%] of 76 subjects) than in the CCC group (21 [12%] of 169) (chi(2) = 12.6; P = .0004 [adjusted P (P(c)) = .0084]; odds ratio [OR], 0.31 [95% confidence interval {CI}, 0.16-0.60]). Subgroup analysis showed a stronger association when asymptomatic patients were compared with patients who had severe CCC (i.e., patients with left-ventricular ejection fraction <= 40%) (chi(2) = 11.3; P = .0008 [P(c) = .017]; OR, 0.22 [95% CI, 0.09-0.56]) than when asymptomatic patients were compared with patients who had mild CCC (i.e., patients with left-ventricular ejection fraction >40%) (chi(2) = 7.7; P = .005 [P(c) = .11]; OR, 0.33 [95% CI, 0.15-0.73]). Conclusion. T. cruzi-infected individuals who are heterozygous for the MAL/TIRAP S180L variant that leads to a decrease in signal transduction upon ligation of TLR2 or TLR4 to their respective ligand may have a lower risk of developing CCC.
Resumo:
A girl with vertically acquired HIV infection presented with a 6-month history of dyspnea and chest pain. Computed tomography of the thorax showed a heterogenous mass measuring 13 x 9 x 17 cm located in the anterior mediastinum. Complete surgical resection was accomplished with no complications. The final diagnosis was multilocular thymic cyst, a distinct pathologic entity that is morphologically distinguishable and unrelated to congenital thymic cyst. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Deletion of the long arm of chromosome 18 is one of the most common segmental aneusomies compatible with life and usually involves a deletion of the terminal chromosomal region. However, the mechanisms implicated in the stabilization of terminal deletions are not well understood. In this study, we analyzed a girl with moderate mental retardation who had a cytogenetically visible terminal 18q deletion. In order to characterize the breakpoint in the terminal 18q region, we used fluorescence In situ hybridization (FISH) with bacterial artificial chromosomes (BACs) and pan-telomeric probes and also the array technique based on comparative genomic hybridization (array-CGH). FISH with pan-telomeric probes revealed no signal in the terminal region of the deleted chromosome, indicating the absence of normal telomere repeat (TTAGGG)n sequences in 18q. We suggest that neo-telomere formation by chromosome healing was involved in the repair and stabilization of this terminal deletion. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
Conventional karyotyping detects anomalies in 3-15% of patients with multiple congenital anomalies and mental retardation (MCA/MR). Whole-genome array screening (WGAS) has been consistently suggested as the first choice diagnostic test for this group of patients, but it is very costly for large-scale use in developing countries. We evaluated the use of a combination of Multiplex Ligation-dependent Probe Amplification (MLPA) kits to increase the detection rate of chromosomal abnormalities in MCA/MR patients. We screened 261 MCA/MR patients with two subtelomeric and one microdeletion kits. This would theoretically detect up to 70% of all submicroscopic abnormalities. Additionally we scored the de Vries score for 209 patients in an effort to find a suitable cut-off for MLPA screening. Our results reveal that chromosomal abnormalities were present in 87 (33.3%) patients, but only 57 (21.8%) were considered causative. Karyotyping detected 15 abnormalities (6.9%), while MLPA identified 54 (20.7%). Our combined MLPA screening raised the total detection number of pathogenic imbalances more than three times when compared to conventional karyotyping. We also show that using the de Vries score as a cutoff for this screening would only be suitable under financial restrictions. A decision analytic model was constructed with three possible strategies: karyotype, karyotype + MLPA and karyotype + WGAS. Karyotype + MLPA strategy detected anomalies in 19.8% of cases which account for 76.45% of the expected yield for karyotype + WGAS. Incremental Cost Effectiveness Ratio (ICER) of MLPA is three times lower than that of WGAS, which means that, for the same costs, we have three additional diagnoses with MLPA but only one with WGAS. We list all causative alterations found, including rare findings, such as reciprocal duplications of regions deleted in Sotos and Williams-Beuren syndromes. We also describe imbalances that were considered polymorphisms or rare variants, such as the new SNP that confounded the analysis of the 22q13.3 deletion syndrome. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
Sotos syndrome (MIM #117550) is an autosomal dominant condition characterized by pre and postnatal overgrowth, macrocephaly and typical facial gestalt with frontal bossing, hypertelorism, antimongoloid slant of the palpebral fissures, prominent jaw and high and narrow palate. This syndrome is also frequently associated with brain, cardiovascular, and urinary anomalies and is occasionally accompanied by malignant lesions such as Wilms turnout and hepatocarcinoma. The syndrome is known to be caused by mutations or deletions of the NSD1 gene. To detect both 5q35 microdeletions and partial NSD1 gene deletions we screened 30 Brazilian patients with clinical diagnosis of Sotos syndrome by multiplex ligation dependent probe amplification. We identified one patient with a total deletion of NSD1 and neighbouring FGFR4, other with missing NSD1 exons 13-14 and another with a deletion involving FGFR4 and spanning up to NSD1 exon 17. All deletions were de novo. The two NSD1 partial deletions have not been previously reported. The clinical features of the three patients included a typical facial gestalt with frontal bossing, prominent jaw and high anterior hairline; macrocephaly, dolichocephaly, large hands; neonatal hypotonia and jaundice. All presented normal growth at birth but postnatal overgrowth. Two patients with NSD1 and FGFR4 gene deletions presented congenital heart anomalies. (C) 2009 Elsevier Masson SAS. All rights reserved.