133 resultados para Specialized genetic algorithm
Resumo:
Os sistemas biológicos são surpreendentemente flexíveis pra processar informação proveniente do mundo real. Alguns organismos biológicos possuem uma unidade central de processamento denominada de cérebro. O cérebro humano consiste de 10(11) neurônios e realiza processamento inteligente de forma exata e subjetiva. A Inteligência Artificial (IA) tenta trazer para o mundo da computação digital a heurística dos sistemas biológicos de várias maneiras, mas, ainda resta muito para que isso seja concretizado. No entanto, algumas técnicas como Redes neurais artificiais e lógica fuzzy tem mostrado efetivas para resolver problemas complexos usando a heurística dos sistemas biológicos. Recentemente o numero de aplicação dos métodos da IA em sistemas zootécnicos tem aumentado significativamente. O objetivo deste artigo é explicar os princípios básicos da resolução de problemas usando heurística e demonstrar como a IA pode ser aplicada para construir um sistema especialista para resolver problemas na área de zootecnia.
Resumo:
A definição das parcelas familiares em projetos de reforma agrária envolve questões técnicas e sociais. Essas questões estão associadas principalmente às diferentes aptidões agrícolas do solo nestes projetos. O objetivo deste trabalho foi apresentar método para realizar o processo de ordenamento territorial em assentamentos de reforma agrária empregando Algoritmo Genético (AG). O AG foi testado no Projeto de Assentamento Veredas, em Minas Gerais, e implementado com base no sistema de aptidão agrícola das terras.
Resumo:
A susceptible-infective-recovered (SIR) epidemiological model based on probabilistic cellular automaton (PCA) is employed for simulating the temporal evolution of the registered cases of chickenpox in Arizona, USA, between 1994 and 2004. At each time step, every individual is in one of the states S, I, or R. The parameters of this model are the probabilities of each individual (each cell forming the PCA lattice ) passing from a state to another state. Here, the values of these probabilities are identified by using a genetic algorithm. If nonrealistic values are allowed to the parameters, the predictions present better agreement with the historical series than if they are forced to present realistic values. A discussion about how the size of the PCA lattice affects the quality of the model predictions is presented. Copyright (C) 2009 L. H. A. Monteiro et al.
Resumo:
Identification, prediction, and control of a system are engineering subjects, regardless of the nature of the system. Here, the temporal evolution of the number of individuals with dengue fever weekly recorded in the city of Rio de Janeiro, Brazil, during 2007, is used to identify SIS (susceptible-infective-susceptible) and SIR (susceptible-infective-removed) models formulated in terms of cellular automaton (CA). In the identification process, a genetic algorithm (GA) is utilized to find the probabilities of the state transition S -> I able of reproducing in the CA lattice the historical series of 2007. These probabilities depend on the number of infective neighbors. Time-varying and non-time-varying probabilities, three different sizes of lattices, and two kinds of coupling topology among the cells are taken into consideration. Then, these epidemiological models built by combining CA and GA are employed for predicting the cases of sick persons in 2008. Such models can be useful for forecasting and controlling the spreading of this infectious disease.
Resumo:
Aims. We derive lists of proper-motions and kinematic membership probabilities for 49 open clusters and possible open clusters in the zone of the Bordeaux PM2000 proper motion catalogue (+ 11 degrees <= delta <= + 18 degrees). We test different parametrisations of the proper motion and position distribution functions and select the most successful one. In the light of those results, we analyse some objects individually. Methods. We differenciate between cluster and field member stars, and assign membership probabilities, by applying a new and fully automated method based on both parametrisations of the proper motion and position distribution functions, and genetic algorithm optimization heuristics associated with a derivative-based hill climbing algorithm for the likelihood optimization. Results. We present a catalogue comprising kinematic parameters and associated membership probability lists for 49 open clusters and possible open clusters in the Bordeaux PM2000 catalogue region. We note that this is the first determination of proper motions for five open clusters. We confirm the non-existence of two kinematic populations in the region of 15 previously suspected non-existent objects.
Resumo:
Southeastern Brazil has seen dramatic landscape modifications in recent decades, due to expansion of agriculture and urban areas; these changes have influenced the distribution and abundance of vertebrates. We developed predictive models of ecological and spatial distributions of capybaras (Hydrochoerus hydrochaeris) using ecological niche modeling. Most Occurrences of capybaras were in flat areas with water bodies Surrounded by sugarcane and pasture. More than 75% of the Piracicaba River basin was estimated as potentially habitable by capybara. The models had low omission error (2.3-3.4%), but higher commission error (91.0-98.5%); these ""model failures"" seem to be more related to local habitat characteristics than to spatial ones. The potential distribution of capybaras in the basin is associated with anthropogenic habitats, particularly with intensive land use for agriculture.
Resumo:
The purpose of this paper is to propose a multiobjective optimization approach for solving the manufacturing cell formation problem, explicitly considering the performance of this said manufacturing system. Cells are formed so as to simultaneously minimize three conflicting objectives, namely, the level of the work-in-process, the intercell moves and the total machinery investment. A genetic algorithm performs a search in the design space, in order to approximate to the Pareto optimal set. The values of the objectives for each candidate solution in a population are assigned by running a discrete-event simulation, in which the model is automatically generated according to the number of machines and their distribution among cells implied by a particular solution. The potential of this approach is evaluated via its application to an illustrative example, and a case from the relevant literature. The obtained results are analyzed and reviewed. Therefore, it is concluded that this approach is capable of generating a set of alternative manufacturing cell configurations considering the optimization of multiple performance measures, greatly improving the decision making process involved in planning and designing cellular systems. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Modal filters may be obtained by a properly designed weighted sum of the output signals of an array of sensors distributed on the host structure. Although several research groups have been interested in techniques for designing and implementing modal filters based on a given array of sensors, the effect of the array topology on the effectiveness of the modal filter has received much less attention. In particular, it is known that some parameters, such as size, shape and location of a sensor, are very important in determining the observability of a vibration mode. Hence, this paper presents a methodology for the topological optimization of an array of sensors in order to maximize the effectiveness of a set of selected modal filters. This is done using a genetic algorithm optimization technique for the selection of 12 piezoceramic sensors from an array of 36 piezoceramic sensors regularly distributed on an aluminum plate, which maximize the filtering performance, over a given frequency range, of a set of modal filters, each one aiming to isolate one of the first vibration modes. The vectors of the weighting coefficients for each modal filter are evaluated using QR decomposition of the complex frequency response function matrix. Results show that the array topology is not very important for lower frequencies but it greatly affects the filter effectiveness for higher frequencies. Therefore, it is possible to improve the effectiveness and frequency range of a set of modal filters by optimizing the topology of an array of sensors. Indeed, using 12 properly located piezoceramic sensors bonded on an aluminum plate it is shown that the frequency range of a set of modal filters may be enlarged by 25-50%.
Resumo:
This paper investigates the validity of a simplified equivalent reservoir representation of a multi-reservoir hydroelectric system for modelling its optimal operation for power maximization. This simplification, proposed by Arvanitidis and Rosing (IEEE Trans Power Appar Syst 89(2):319-325, 1970), imputes a potential energy equivalent reservoir with energy inflows and outflows. The hydroelectric system is also modelled for power maximization considering individual reservoir characteristics without simplifications. Both optimization models employed MINOS package for solution of the non-linear programming problems. A comparison between total optimized power generation over the planning horizon by the two methods shows that the equivalent reservoir is capable of producing satisfactory power estimates with less than 6% underestimation. The generation and total reservoir storage trajectories along the planning horizon obtained by equivalent reservoir method, however, presented significant discrepancies as compared to those found in the detailed modelling. This study is motivated by the fact that Brazilian generation system operations are based on the equivalent reservoir method as part of the power dispatch procedures. The potential energy equivalent reservoir is an alternative which eliminates problems with the dimensionality of state variables in a dynamic programming model.
Resumo:
This paper addresses the use of optimization techniques in the design of a steel riser. Two methods are used: the genetic algorithm, which imitates the process of natural selection, and the simulated annealing, which is based on the process of annealing of a metal. Both of them are capable of searching a given solution space for the best feasible riser configuration according to predefined criteria. Optimization issues are discussed, such as problem codification, parameter selection, definition of objective function, and restrictions. A comparison between the results obtained for economic and structural objective functions is made for a case study. Optimization method parallelization is also addressed. [DOI: 10.1115/1.4001955]
Resumo:
In this work, a wide analysis of local search multiuser detection (LS-MUD) for direct sequence/code division multiple access (DS/CDMA) systems under multipath channels is carried out considering the performance-complexity trade-off. It is verified the robustness of the LS-MUD to variations in loading, E(b)/N(0), near-far effect, number of fingers of the Rake receiver and errors in the channel coefficients estimates. A compared analysis of the bit error rate (BER) and complexity trade-off is accomplished among LS, genetic algorithm (GA) and particle swarm optimization (PSO). Based on the deterministic behavior of the LS algorithm, it is also proposed simplifications over the cost function calculation, obtaining more efficient algorithms (simplified and combined LS-MUD versions) and creating new perspectives for the MUD implementation. The computational complexity is expressed in terms of the number of operations in order to converge. Our conclusion pointed out that the simplified LS (s-LS) method is always more efficient, independent of the system conditions, achieving a better performance with a lower complexity than the others heuristics detectors. Associated to this, the deterministic strategy and absence of input parameters made the s-LS algorithm the most appropriate for the MUD problem. (C) 2008 Elsevier GmbH. All rights reserved.
Resumo:
This paper analyzes the complexity-performance trade-off of several heuristic near-optimum multiuser detection (MuD) approaches applied to the uplink of synchronous single/multiple-input multiple-output multicarrier code division multiple access (S/MIMO MC-CDMA) systems. Genetic algorithm (GA), short term tabu search (STTS) and reactive tabu search (RTS), simulated annealing (SA), particle swarm optimization (PSO), and 1-opt local search (1-LS) heuristic multiuser detection algorithms (Heur-MuDs) are analyzed in details, using a single-objective antenna-diversity-aided optimization approach. Monte- Carlo simulations show that, after convergence, the performances reached by all near-optimum Heur-MuDs are similar. However, the computational complexities may differ substantially, depending on the system operation conditions. Their complexities are carefully analyzed in order to obtain a general complexity-performance framework comparison and to show that unitary Hamming distance search MuD (uH-ds) approaches (1-LS, SA, RTS and STTS) reach the best convergence rates, and among them, the 1-LS-MuD provides the best trade-off between implementation complexity and bit error rate (BER) performance.
Resumo:
Tuberculosis is an infection caused mainly by Mycobacterium tuberculosis. A first-line antimycobacterial drug is pyrazinamide (PZA), which acts partially as a prodrug activated by a pyrazinamidase releasing the active agent, pyrazinoic acid (POA). As pyrazinoic acid presents some difficulty to cross the mycobacterial cell wall, and also the pyrazinamide-resistant strains do not express the pyrazinamidase, a set of pyrazinoic acid esters have been evaluated as antimycobacterial agents. In this work, a QSAR approach was applied to a set of forty-three pyrazinoates against M. tuberculosis ATCC 27294, using genetic algorithm function and partial least squares regression (WOLF 5.5 program). The independent variables selected were the Balaban index (I), calculated n-octanol/water partition coefficient (ClogP), van-der-Waals surface area, dipole moment, and stretching-energy contribution. The final QSAR model (N = 32, r(2) = 0.68, q(2) = 0.59, LOF = 0.25, and LSE = 0.19) was fully validated employing leave-N-out cross-validation and y-scrambling techniques. The test set (N = 11) presented an external prediction power of 73%. In conclusion, the QSAR model generated can be used as a valuable tool to optimize the activity of future pyrazinoic acid esters in the designing of new antituberculosis agents.
Resumo:
Histamine is an important biogenic amine, which acts with a group of four G-protein coupled receptors (GPCRs), namely H(1) to H(4) (H(1)R - H(4)R) receptors. The actions of histamine at H(4)R are related to immunological and inflammatory processes, particularly in pathophysiology of asthma, and H(4)R ligands having antagonistic properties could be helpful as antiinflammatory agents. In this work, molecular modeling and QSAR studies of a set of 30 compounds, indole and benzimidazole derivatives, as H(4)R antagonists were performed. The QSAR models were built and optimized using a genetic algorithm function and partial least squares regression (WOLF 5.5 program). The best QSAR model constructed with training set (N = 25) presented the following statistical measures: r (2) = 0.76, q (2) = 0.62, LOF = 0.15, and LSE = 0.07, and was validated using the LNO and y-randomization techniques. Four of five compounds of test set were well predicted by the selected QSAR model, which presented an external prediction power of 80%. These findings can be quite useful to aid the designing of new anti-H(4) compounds with improved biological response.
Resumo:
Chlorpheniramine maleate (CLOR) enantiomers were quantified by ultraviolet spectroscopy and partial least squares regression. The CLOR enantiomers were prepared as inclusion complexes with beta-cyclodextrin and 1-butanol with mole fractions in the range from 50 to 100%. For the multivariate calibration the outliers were detected and excluded and variable selection was performed by interval partial least squares and a genetic algorithm. Figures of merit showed results for accuracy of 3.63 and 2.83% (S)-CLOR for root mean square errors of calibration and prediction, respectively. The ellipse confidence region included the point for the intercept and the slope of 1 and 0, respectively. Precision and analytical sensitivity were 0.57 and 0.50% (S)-CLOR, respectively. The sensitivity, selectivity, adjustment, and signal-to-noise ratio were also determined. The model was validated by a paired t test with the results obtained by high-performance liquid chromatography proposed by the European pharmacopoeia and circular dichroism spectroscopy. The results showed there was no significant difference between the methods at the 95% confidence level, indicating that the proposed method can be used as an alternative to standard procedures for chiral analysis.