17 resultados para Spawning Corals


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Taxonomic characterization was performed on the putative N-2-fixing microbiota associated with the coral species Mussismilia hispida, and with its sympatric species Palythoa caribaeorum, P. variabilis, and Zoanthus solanderi, off the coast of Sao Sebastiao (Sao Paulo State, Brazil). The 95 isolates belonged to the Gammaproteobacteria according to the 16S rDNA gene sequences. In order to identify the isolates unambiguously, pyrH gene sequencing was carried out. The majority of the isolates (n = 76) fell within the Vibrio core group, with the highest gene sequence similarity being towards Vibrio harveyi and Vibrio alginolyticus. Nineteen representative isolates belonging to V. harveyi (n = 7), V. alginolyticus (n = 8), V. campbellii (n = 3), and V parahaemolyticus (n = 1) were capable of growing six successive times in nitrogen-free medium and some of them showed strong nitrogenase activity by means of the acetylene reduction assay (ARA). It was concluded that nitrogen fixation is a common phenotypic trait among Vibrio species of the core group. The fact that different Vibrio species can fix N, might explain why they are so abundant in the mucus of different coral species. (C) 2008 Published by Elsevier GmbH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a high-resolution reverse-phase liquid chromatography method we found that the tissues of the hermatypic coral Pocillopora capitato (collected in Santiago Bay, Mexico) contain a high diversity of primary and secondary mycosporine-like amino acids (MAAs) typical of some reef-building coral species: mycosporine-glycine, shinorine, porphyra-334, mycosporine-methylamine-serine, mycosporine-methylamine-threonine, palythine-serine, palythine and one additional novel predominant MAA, with an absorbance maximum of 320 nm. Here we document the isolation and characterization of this novel MAA from the coral A capitata. Using low multi-stage mass analyses of deuterated and non deuterated compounds, high-resolution mass analyses (Time of Flight, TOF) and other techniques, this novel compound was characterized as palythine-threonine. Palythine-threonine was also present in high concentrations in the corals Pocillopora eydouxi and Stylophora pistillata indicating a wider distribution of this MAA among reef-building corals. From structural considerations we suggest that palythine-threonine is formed by decarboxylation of porphyra-334 followed by demethylation of mycosporine-methylamine-threonine. (C) 2008 Elsevier B.V. All rights reserved.