26 resultados para Somatolactin hormone
Resumo:
Several studies have implicated the renin angiotensin system in the cardiac hypertrophy induced by thyroid hormone. However, whether Angiotensin type 1 receptor (AT(1)R) is critically required to the development of T(3)-induced cardiomyocyte hypertrophy as well as whether the intracellular mechanisms that are triggered by AT(1)R are able to contribute to this hypertrophy model is unknown. To address these questions, we employed a selective small interfering RNA (siRNA, 50 nM) or an AT(1)R blocker (Losartan, 1 mu M) to evaluate the specific role of this receptor in primary cultures of neonatal cardiomyocytes submitted to T(3) (10 nM) treatment. The cardiomyocytes transfected with the AT(1)R siRNA presented reduced mRNA (90%, P < 0.001) and protein (70%, P < 0.001) expression of AT(1)R. The AT(1)R silencing and the AT(1)R blockade totally prevented the T(3)-induced cardiomyocyte hypertrophy, as evidenced by lower mRNA expression of atrial natriuretic factor (66%, P < 0.01) and skeletal alpha-actin (170%, P < 0.01) as well as by reduction in protein synthesis (85%, P < 0.001). The cardiomyocytes treated with T(3) demonstrated a rapid activation of Akt/GSK-3 beta/mTOR signaling pathway, which was completely inhibited by the use of PI3K inhibitors (LY294002, 10 mu M and Wortmannin, 200 nM). In addition, we demonstrated that the AT(1)R mediated the T(3)-induced activation of Akt/GSK-3 beta/mTOR signaling pathway, since the AT(1)R silencing and the AT(1)R blockade attenuated or totally prevented the activation of this signaling pathway. We also reported that local Angiotensin I/II (Ang I/II) levels (120%, P < 0.05) and the AT(1)R expression (180%, P < 0.05) were rapidly increased by T(3) treatment. These data demonstrate for the first time that the AT(1)R is a critical mediator to the T(3)-induced cardiomyocyte hypertrophy as well as to the activation of Akt/GSK-3 beta/mTOR signaling pathway. These results represent a new insight into the mechanism of T(3)-induced cardiomyocyte hypertrophy, indicating that the Ang I/II-AT(1)R-Akt/GSK-3 beta/mTOR pathway corresponds to a potential mediator of the trophic effect exerted by T(3) in cardiomyocytes.
Resumo:
Energy balance is maintained by controlling both energy intake and energy expenditure. Thyroid hormones play a crucial role in regulating energy expenditure. Their levels are adjusted by a tight feed back-control led regulation of thyroid hormone production/incretion and by their hepatic metabolism. Thyroid hormone degradation has previously been shown to be enhanced by treatment with phenobarbital or other antiepileptic drugs due to a CAR-dependent induction of phase 11 enzymes of xenobiotic metabolism. We have recently shown, that PPAR alpha agonists synergize with phenobarbital to induce another prototypical CAR target gene, CYP2B1. Therefore, it was tested whether a PPAR alpha agonist could enhance the phenobarbital-dependent acceleration of thyroid hormone elimination. In primary cultures of rat hepatocytes the apparent half-life of T3 was reduced after induction with a combination of phenobarbital and the PPARa agonist WY14643 to a larger extent than after induction with either Compound alone. The synergistic reduction of the half-life could be attributed to a synergistic induction of CAR and the CAR target genes that code for enzymes and transporters involved in the hepatic elimination of T3, such as OATP1A1, OATP1A3, UGT1A3 and UCT1A10. The PPAR alpha-dependent CAR induction and the subsequent induction of T3-eliminating enzymes might be of physiological significance for the fasting-incluced reduction in energy expenditure by fatty acids as natural PPARa ligands. The synergism of the PPAR alpha agonist WY14643 and phenobarbital in inducing thyroid hormone breakdown might serve as a paradigm for the synergistic disruption of endocrine control by other combinations of xenobiotics. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Previous studies showed anabolic effects of GC-1, a triiodothyronine (T3) analogue that is selective for both binding and activation functions of thyroid hormone receptor (TR) beta 1 over TR alpha 1, on bone tissue in vivo. The aim of this study was to investigate the responsiveness of rat (ROS17/2.8) and mouse (MC3T3-E1) osteoblast-like cells to GC-1. As expected, T3 inhibited cellular proliferation and stimulated mRNA expression of osteocalcin or alkaline phosphatase in both cell lineages. Whereas equimolar doses of T3 and GC-1 equally affected these parameters in ROS17/2.8 cells, the effects of GC-1 were more modest compared to those of T3 in MC3T3-E1 cells. Interestingly, we showed that there is higher expression of TR alpha 1 than TR beta 1 mRNA in rat (similar to 20-90%) and mouse (similar to 90-98%) cell lineages and that this difference is even higher in mouse cells, which highlights the importance of TR alpha 1 to bone physiology and may partially explain the modest effects of GC-1 in comparison with T3 in MC3T3-E1 cells. Nevertheless, we showed that TR beta 1 mRNA expression increases (similar to 2.8- to 4.3-fold) as osteoblastic cells undergo maturation, suggesting a key role of TR beta 1 in mediating T3 effects in the bone forming cells, especially in mature osteoblasts. It is noteworthy that T3 and GC-1 induced TR beta 1 mRNA expression to a similar extent in both cell lineages (similar to 2- to 4-fold), indicating that both ligands may modulate the responsiveness of osteoblasts to T3. Taken together, these data show that TR beta selective T3 analogues have the potential to directly induce the differentiation and activity of osteoblasts.
Resumo:
Most physiological effects of thyroid hormones are mediated by the two thyroid hormone receptor subtypes, TR alpha and TR beta. Several pharmacological effects mediated by TR beta might be beneficial in important medical conditions such as obesity, hypercholesterolemia and diabetes, and selective TR beta activation may elicit these effects while maintaining an acceptable safety profile, To understand the molecular determinants of affinity and subtype selectivity of TR ligands, we have successfully employed a ligand- and structure-guided pharmacophore-based approach to obtain the molecular alignment of a large series of thyromimetics. Statistically reliable three-dimensional quantitative structure-activity relationship (3D-QSAR) and three-dimensional quantitative structure-selectivity relationship (3D-QSSR) models were obtained using the comparative molecular field analysis (CoMFA) method, and the visual analyses of the contour maps drew attention to a number of possible opportunities for the development of analogs with improved affinity and selectivity. Furthermore, the 3D-QSSR analysis allowed the identification of a novel and previously unmentioned halogen bond, bringing new insights to the mechanism of activity and selectivity of thyromimetics.
Resumo:
Some nuclear receptor (NR) ligands promote dissociation of radiolabeled bound hormone from the buried ligand binding cavity (LBC) more rapidly than excess unlabeled hormone itself This result was interpreted to mean that challenger ligands bind allosteric sites on the LBD to induce hormone dissociation, and recent findings indicate that ligands bind weakly to multiple sites on the LBD surface. Here we show, that a large fraction of thyroid hormone receptor (TR) ligands promote rapid dissociation (T(1/2) < 2 h) of , radiolabeled T(3) vs. T(3) (T(1/2), approximate to 5-7 h). We cannot discern relationships between this effect and ligand size, activity or affinity for TR beta. One ligand, GC-24, binds the TR LBC and (weakly) to the TR beta-LBD surface that mediates dimer/heterodimer interaction, but we cannot link this interaction to rapid T(3) dissociation. Instead, several lines of evidence suggest that the challenger ligand must interact with the buried LBC to promote rapid T(3) release. Since previous molecular dynamics simulations suggest that TR ligands leave the LBC by several routes, we propose that a subset of challenger ligands binds and stabilizes a partially unfolded intermediate state of TR that arises during T(3) release and that this effect enhances hormone dissociation. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Thyroid hormones exert most of their physiological effects through two thyroid hormone receptor (TR) subtypes, TR alpha and TR beta, which associate with many transcriptional coregulators to mediate activation or repression of target genes. The search for selective TR beta ligands has been stimulated by the finding that several pharmacological actions mediated by TR beta might be beneficial in medical conditions such as obesity, hypercholesterolemia and diabetes. Here, we present a new methodology which employs surface plasmon resonance to investigate the interactions between TR beta ligand binding domain (LBD) complexes and peptides derived from the nuclear receptor interaction motifs of two of its coregulators, SRC2 and DAX1. The effect of several TR beta ligands, including the TR beta selective agonist GC-I and the TR beta selective antagonist NH-3, were investigated. We also determined the kinetic rate constants for the interaction of TR beta-T3 with both coregulators, and accessed the thermodynamic parameters for the interaction with DAX1. Our findings Suggest that flexibility plays an important role in the interaction between the receptor and its coregulators. and point out important aspects of experimental design that should be addressed when using TR beta LBD and its agonists. Furthermore, the methodology described here may be useful for the identification of new TR beta ligands. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Thyroid hormone receptors (TR) are hormone-dependent transcription regulators that play a major role in human health, development, and metabolic functions. The thyroid hormone resistance syndrome, diabetes, obesity, and some types of cancer are just a few examples of important diseases that are related to TR malfunctioning, particularly impaired hormone binding. Ligand binding to and dissociation from the receptor ultimately control gene transcription and, thus, detailed knowledge of binding and release mechanisms are fundamental for the comprehension of the receptor`s biological function and development of pharmaceuticals. In this work, we present the first computational study of ligand entry into the ligand binding domain (LBD) of a nuclear receptor. We report molecular dynamics simulations of ligand binding to TRs using a generalization of the steered molecular dynamics technique designed to perform single-molecule pulling simulations along arbitrarily nonlinear driving pathways. We show that only gentle protein movements and conformational adaptations are required for ligand entry into the LBDs and that the magnitude of the forces applied to assist ligand binding are of the order of the forces involved in ligand dissociation. Our simulations suggest an alternative view for the mechanisms ligand binding and dissociation of ligands from nuclear receptors in which ligands can simply diffuse through the protein surface to reach proper positioning within the binding pocket. The proposed picture indicates that the large-amplitude protein motions suggested by the apo- and holo-RXR alpha crystallographic structures are not required, reconciling conformational changes of LBDs required for ligand entry with other nuclear receptors apo-structures that resemble the ligand-bound LBDs.
Resumo:
Thyroid hormone receptors (TRs) are ligand-gated transcription factors with critical roles in development and metabolism. Although x-ray structures of TR ligand-binding domains (LBDs) with agonists are available, comparable structures without ligand (apo-TR) or with antagonists are not. It remains important to understand apo-LBD conformation and the way that it rearranges with ligands to develop better TR pharmaceuticals. In this study, we conducted hydrogen/deuterium exchange on TR LBDs with or without agonist (T(3)) or antagonist (NH(3)). Both ligands reduce deuterium incorporation into LBD amide hydrogens, implying tighter overall folding of the domain. As predicted, mass spectroscopic analysis of individual proteolytic peptides after hydrogen/deuterium exchange reveals that ligand increases the degree of solvent protection of regions close to the buried ligand-binding pocket. However, there is also extensive ligand protection of other regions, including the dimer surface at H10-H11, providing evidence for allosteric communication between the ligand-binding pocket and distant interaction surfaces. Surprisingly, C-terminal activation helix H12, which is known to alter position with ligand, remains relatively protected from solvent in all conditions suggesting that it is packed against the LBD irrespective of the presence or type of ligand. T(3), but not NH(3), increases accessibility of the upper part of H3-H5 to solvent, and we propose that TR H12 interacts with this region in apo-TR and that this interaction is blocked by T(3) but not NH(3.) We present data from site-directed mutagenesis experiments and molecular dynamics simulations that lend support to this structural model of apo-TR and its ligand-dependent conformational changes. (Molecular Endocrinology 25: 15-31, 2011)
Resumo:
To shed more light on the molecular requirements for recognition of thyroid response elements (TRES) by thyroid receptors (TRs), we compared the specific aspects of DNA TRE recognition by different TR constructs. Using fluorescence anisotropy, we performed a detailed and hierarchical study of TR-TRE binding. This wits done by comparing the binding affinities of three different TR constructs for four different TRE DNA elements, including palindromic sequences and direct repeats (F2, PAL, DR-1, and DR-4) as well as their interactions with nonspecific DNA sequences. The effect of MgCl(2) on suppressing of nonselective DNA binding to TR was also investigated. Furthermore, we determined the dissociation constants of the hTR beta DBD (DNA binding domain) and hTR beta DBD-LBD (DNA binding and ligand binding domains) for specific TRES. We found that a minimum DNA recognition peptide derived from DBD (H1TR) is sufficient for recognition and interaction with TREs, whereas scrambled DNA sequences were unrecognized. Additionally, we determined that the TR DBD binds to F2, PAL, and DR-4 with high affinity and similar K(d) values. The TR DBD-LBD recognizes all the tested TRES but binds preferentially to F2, with even higher affinity. Finally, our results demonstrate the important role played by LBDs in modulating TR-DNA binding.
Resumo:
The ligand binding domain (LBD) of nuclear hormone receptors adopts a very compact, mostly alpha-helical structure that binds specific ligands with very high affinity. We use circular dichroism spectroscopy and high-temperature molecular dynamics Simulations to investigate unfolding of the LBDs of thyroid hormone receptors (TRs). A molecular description of the denaturation mechanisms is obtained by molecular dynamics Simulations of the TR alpha and TR beta LBDs in the absence and in the presence of the natural ligand Triac. The Simulations Show that the thermal unfolding of the LBD starts with the loss of native contacts and secondary Structure elements, while the Structure remains essentially compact, resembling a molten globule state. This differs From most protein denaturation simulations reported to date and suggests that the folding mechanism may start with the hydrophobic collapse of the TR LBDs. Our results reveal that the stabilities of the LBDs of the TR alpha and TR beta Subtypes are affected to different degrees by the binding of the isoform selective ligand Triac and that ligand binding confers protection against thermal denaturation and unfolding in a subtype specific manner. Our Simulations indicate two mechanisms by which the ligand stabilizes the LBD: (1) by enhancing the interactions between H8 and H 11, and the interaction of the region between H I and the Omega-loop with the core of the LBD, and (2) by shielding the hydrophobic H6 from hydration.
Resumo:
Nuclear receptors are important targets for pharmaceuticals, but similarities between family members cause difficulties in obtaining highly selective compounds. Synthetic ligands that are selective for thyroid hormone (TH) receptor beta (TR beta) vs. TR alpha reduce cholesterol and fat without effects on heart rate; thus, it is important to understand TR beta-selective binding. Binding of 3 selective ligands (GC-1, KB141, and GC-24) is characterized at the atomic level; preferential binding depends on a nonconserved residue (Asn-331 beta) in the TR beta ligand-binding cavity (LBC), and GC-24 gains extra selectivity from insertion of a bulky side group into an extension of the LBC that only opens up with this ligand. Here we report that the natural TH 3,5,3`-triodothyroacetic acid (Triac) exhibits a previously unrecognized mechanism of TR beta selectivity. TR x-ray structures reveal better fit of ligand with the TR alpha LBC. The TR beta LBC, however, expands relative to TR alpha in the presence of Triac (549 angstrom(3) vs. 461 angstrom(3)), and molecular dynamics simulations reveal that water occupies the extra space. Increased solvation compensates for weaker interactions of ligand with TR beta and permits greater flexibility of the Triac carboxylate group in TR beta than in TR alpha. We propose that this effect results in lower entropic restraint and decreases free energy of interactions between Triac and TR beta, explaining subtype-selective binding. Similar effects could potentially be exploited in nuclear receptor drug design.