19 resultados para Solid state reaction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

[Ba(1-x)Y(2x/3)](Zr(0.25)Ti(0.75))O(3) powders with different yttrium concentrations (x = 0, 0.025 and 0.05) were prepared by solid state reaction. These powders were analyzed by X-ray diffraction (XRD). Fourier transform Raman scattering (FT-RS), Fourier transform infrared (FT-IR) and X-ray absorption near-edge (XANES) spectroscopies. The optical properties were investigated by means of ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. Even with the addition of yttrium, the XRD patterns revealed that all powders crystallize in a perovskite-type cubic structure. FT-RS and FT-IR spectra indicated that the presence of [YO(6)] clusters is able to change the interaction forces between the O-Ti-O and O-Zr-O bonds. XANES spectra were used to obtain information on the off-center Ti displacements or distortion effects on the [TiO(6)] clusters. The different optical band gap values estimated from UV-vis spectra suggested the existence of intermediary energy levels (shallow or deep holes) within the band gap. The PL measurements carried out with a 350 nm wavelength at room temperature showed that all powders present typical broad band emissions in the blue region. (C) 2010 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The persistent luminescence materials, barium aluminates doped with Eu(2+) and Dy(3+) (BaAl(2)O(4): Eu(2+),Dy(3+)), were prepared with the combustion synthesis at temperatures between 400 and 600 degrees C as well as with the solid state reaction at 1500 degrees C. The concentrations of Eu(2+)/Dy(3+) (in mol% of the Ba amount) ranged from 0.1/0.1 to 1.0/3.0. The electronic and defect energy level structures were studied with thermoluminescence (TL) and synchrotron radiation (SR) spectroscopies: UV-VUV excitation and emission, as well as with X-ray absorption near-edge structure (XANES) methods. Theoretical calculations using the density functional theory (DFT) were carried out in order to compare with the experimental data. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lithium nitrate has been used to prevent and to mediate the expansion caused by alkali-silica reaction (ASR). However, there is limited information on how it affects the existing reaction products caused by ASR. The aim of the present work is to determine the modifications caused by the LiNO3 treatment on the structure of the gel produced by ASR. ASR gel samples obtained from a concrete dam were exposed to an aqueous solution of lithium nitrate and sodium hydroxide with molar LiNO3/NaOH = 0.74, and the resulting products were analyzed by X-ray diffraction, infrared spectroscopy, and solid-state nuclear magnetic resonance of Si-29, Na-23, and Li-7. The treatment of the gel samples produces significant structural modifications in ASR products. A new amorphous silicate compound incorporating Li+ ions is formed, with an average silicate network that can be described as linear in contrast with the layered structure of the original gel. This elimination of the layered structure after the Li-based treatments may be related to the reduction of the tendency of the gel to expand. Also, several crystalline compounds containing potassium indicate the release of this species from the original ASR gel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A spectroscopic study was performed showing that the [Fe(III)(L(2-))(2)](1-) (L(2-) = dopacatecholate) complex reacts with Ni(II), Co(II) and Zn(II) in an aqueous solution containing S(2)O(3)(2-) resulting in the soluble [M(L(1-))(3)](1-) (L(1-) = dopasemiquinone; M = Ni(II), Co(II) or Zn(II) complex species. The Raman and IR spectra of the [CTA][M(L(1-))(3)] complexes, CTA hexadecyltrimethylammonium cation, in the solid state were obtained. The kinetic constants for the metal substitution reactions were determined at four different temperatures, providing values for Delta W(not equal) Delta S(not equal) and Delta G(not equal). The reactions were slow (k = 10(-1)1 M s(-1)) and endothermic. The system investigated can be considered as a simplified model to explain some aspects of siderophore chemistry. (c) 2007 Elsevier Inc. All rights reserved.