69 resultados para Skeletal apparatus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been suggested that muscle tension plays a major role in the activation of intracellular pathways for skeletal muscle hypertrophy via an increase in mechano growth factor (MGF) and other downstream targets. Eccentric exercise (EE) imposes a greater amount of tension on the active muscle. In particular, high-speed EE seems to exert an additional effect on muscle tension and, thus, on muscle hypertrophy. However, little is known about the effect of EE velocity on hypertrophy signaling. This study investigated the effect of acute EE-velocity manipulation on the Akt/mTORCI/p70(S6K) hypertrophy pathway. Twenty subjects were assigned to either a slow (20 degrees.s(-1); ES) or fast EE (210 degrees.s(-1); EF) group. Biopsies were taken from vastus lateralis at baseline (B), immediately after (T1), and 2 h after (T2) the completion of 5 sets of 8 repetitions of eccentric knee extensions. Akt, mTOR, and p70(S6K) total protein were similar between groups, and did not change postintervention. Further, Akt and p70(S6K) protein phosphorylation were higher at T2 than at B for ES and EF. MGF messenger RNA was similar between groups, and only significantly higher at T2 than at B in ES. The acute manipulation of EE velocity does not seem to differently influence intracellular hypertrophy signaling through the Akt/mTORCI/p70S6K pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to assess the effect of leucine supplementation on elements of the ubiquitin proteasome system (UPS) in rat skeletal muscle during immobilization. This effect was evaluated by submitting the animals to a leucine supplementation protocol during hindlimb immobilization, after which different parameters were determined, including: muscle mass; cross-sectional area (CSA); gene expression of E3 ligases/deubiquitinating enzymes; content of ubiquitinated proteins; and rate of protein synthesis. Our results show that leucine supplementation attenuates soleus muscle mass loss driven by immobilization. In addition, the marked decrease in the CSA in soleus muscle type I fibers, but not type II fibers, induced by immobilization was minimized by leucine feeding. Interestingly, leucine supplementation severely minimized the early transient increase in E3 ligase [muscle ring finger 1 (MuRF1) and muscle atrophy F-box (MAFbx)/atrogin-1] gene expression observed during immobilization. The reduced peak of E3 ligase gene expression was paralleled by a decreased content of ubiquitinated proteins during leucine feeding. The protein synthesis rate decreased by immobilization and was not affected by leucine supplementation. Our results strongly suggest that leucine supplementation attenuates muscle wasting induced by immobilization via minimizing gene expression of E3 ligases, which consequently could downregulate UPS-driven protein degradation. It is notable that leucine supplementation does not restore decreased protein synthesis driven by immobilization. Muscle Nerve 41: 800-808, 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bueno CR Jr, Ferreira JC, Pereira MG, Bacurau AV, Brum PC. Aerobic exercise training improves skeletal muscle function and Ca(2+) handling-related protein expression in sympathetic hyperactivity-induced heart failure. J Appl Physiol 109: 702-709, 2010. First published July 1, 2010; doi: 10.1152/japplphysiol.00281.2010.-The cellular mechanisms of positive effects associated with aerobic exercise training on overall intrinsic skeletal muscle changes in heart failure (HF) remain unclear. We investigated potential Ca(2+) abnormalities in skeletal muscles comprising different fiber compositions and investigated whether aerobic exercise training would improve muscle function in a genetic model of sympathetic hyperactivity-induced HF. A cohort of male 5-mo-old wild-type (WT) and congenic alpha(2A)/alpha(2C) adrenoceptor knockout (ARKO) mice in a C57BL/6J genetic background were randomly assigned into untrained and trained groups. Exercise training consisted of a 8-wk running session of 60 min, 5 days/wk (from 5 to 7 mo of age). After completion of the exercise training protocol, exercise tolerance was determined by graded treadmill exercise test, muscle function test by Rotarod, ambulation and resistance to inclination tests, cardiac function by echocardiography, and Ca(2+) handling-related protein expression by Western blot. alpha(2A)/alpha(2C)ARKO mice displayed decreased ventricular function, exercise intolerance, and muscle weakness paralleled by decreased expression of sarcoplasmic Ca(2+) release-related proteins [alpha(1)-, alpha(2)-, and beta(1)-subunits of dihydropyridine receptor (DHPR) and ryanodine receptor (RyR)] and Ca(2+) reuptake-related proteins [sarco(endo) plasmic reticulum Ca(2+)-ATPase (SERCA) 1/2 and Na(+)/Ca(2+) exchanger (NCX)] in soleus and plantaris. Aerobic exercise training significantly improved exercise tolerance and muscle function and reestablished the expression of proteins involved in sarcoplasmic Ca(2+) handling toward WT levels. We provide evidence that Ca(2+) handling-related protein expression is decreased in this HF model and that exercise training improves skeletal muscle function associated with changes in the net balance of skeletal muscle Ca(2+) handling proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Volitional animal resistance training constitutes an important approach to modeling human resistance training. However, the lack of standardization protocol poses a frequent impediment to the production of skeletal muscle hypertrophy and the study of related physiological variables (i.e., cellular damage/inflammation or metabolic stress). Therefore, the purposes of the present study were: (1) to test whether a long-term and low frequency experimental resistance training program is capable of producing absolute increases in muscle mass; (2) to examine whether cellular damage/inflammation or metabolic stress is involved in the process of hypertrophy. In order to test this hypothesis, animals were assigned to a sedentary control (C, n = 8) or a resistance trained group (RT, n = 7). Trained rats performed 2 exercise sessions per week (16 repetitions per day) during 12 weeks. Our results demonstrated that the resistance training strategy employed was capable of producing absolute mass gain in both soleus and plantaris muscles (12%, p<0.05). Furthermore, muscle tumor necrosis factor (TNF-alpha) protein expression (soleus muscle) was reduced by 24% (p<0.01) in trained group when compared to sedentary one. Finally, serum creatine kinase (CK) activity and serum lactate concentrations were not affected in either group. Such information may have practical applications if reproduced in situations where skeletal muscle hypertrophy is desired but high mechanical stimuli of skeletal muscle and inflammation are not. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exercise training is known to promote relevant changes in the properties of skeletal muscle contractility toward powerful fibers. However, there are few studies showing the effect of a well-established exercise training protocol on Ca(2+) handling and redox status in skeletal muscles with different fiber-type compositions. We have previously standardized a valid and reliable protocol to improve endurance exercise capacity in mice based on maximal lactate steady-state workload (MLSSw). The aim of this study was to investigate the effect of exercise training, performed at MLSSw, on the skeletal muscle Ca(2+) handling-related protein levels and cellular redox status in soleus and plantaris. Male C57BL/6J mice performed treadmill training at MLSSw over a period of eight weeks. Muscle fiber-typing was determined by myosin ATPase histochemistry, citrate synthase activity by spectrophotometric assay, Ca(2+) handling-related protein levels by Western blot and reduced to oxidized glutathione ratio (GSH:GSSG) by high-performance liquid chromatography. Trained mice displayed higher running performance and citrate synthase activity compared with untrained mice. Improved running performance in trained mice was paralleled by fast-to-slow fiber-type shift and increased capillary density in both plantaris and soleus. Exercise training increased dihydropyridine receptor (DHPR) alpha 2 subunit, ryanodine receptor and Na(+)/Ca(2+) exchanger levels in plantaris and soleus. Moreover, exercise training elevated DHPR beta 1 subunit and sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) 1 levels in plantaris and SERCA2 levels in soleus of trained mice. Skeletal muscle GSH content and GSH:GSSG ratio was increased in plantaris and soleus of trained mice. Taken together, our findings indicate that MLSSw exercise-induced better running performance is, in part, due to increased levels of proteins involved in skeletal muscle Ca(2+) handling, whereas this response is partially dependent on specificity of skeletal muscle fiber-type composition. Finally, we demonstrated an augmented cellular redox status and GSH antioxidant capacity in trained mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heart failure (HF) is associated with changes in the skeletal muscle (SM) which might be a consequence of the unbalanced local expression of pro- (TNF-alpha) and anti- (IL-10) inflammatory cytokines, leading to inflammation-induced myopathy, and SM wasting. This local effect of HF on SM may, on the other hand, contribute to systemic inflammation, as this tissue actively secretes cytokines. Since increasing evidence points out to an anti-inflammatory effect of exercise training, the goal of the present study was to investigate its effect in rats with HF after post-myocardial infarction (MI), with special regard to the expression of TNF-alpha and IL-10 in the soleus and extensor digitorum longus (EDL), muscles with different fiber composition. Wistar rats underwent left thoracotomy with ligation of the left coronary artery, and were randomly assigned to either a sedentary (Sham-operated and MI sedentary) or trained (Sham-operated and MI trained) group. Animals in the trained groups ran on a treadmill (0% grade at 13-20 m/min) for 60 min/day, 5 days/week, for 8-10 weeks. The training protocol was able to reverse the changes induced by MI, decreasing TNF-alpha protein (26%, P < 0.05) and mRNA (58%, P < 0.05) levels in the soleus, when compared with the sedentary MI group. Training also increased soleus IL-10 expression (2.6-fold, P < 0.001) in post-MI HF rats. As a consequence, the IL-10/TNF-alpha ratio was increased. This ""anti-inflammatory effect"" was more pronounced in the soleus than in the EDL, suggesting a fiber composition dependent response. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work investigates the influence of heat shock proteins (HSPs) on necrosis and subsequent skeletal muscle regeneration induced by crotoxin (CTX), the major component of Crotalus durissus terrificus venom. Mice were treated with radicicol, a HSP inductor, followed by an intramuscular injection of CTX into the gastrocnemius muscle. Treated groups were sacrificed 1, 10 and 21 days after CTX injection. Muscle histological sections were stained with toluidine blue and assayed for acid phosphatase or immunostained with either neuronal cell adhesion molecule (NCAM) or neonatal myosin heavy chain (MHCn). Muscle samples were also submitted to Western blotting analysis. The results show that CTX alone and CTX combined with radicicol induced a similar degree of myofiber necrosis. CTX-injured muscles treated with radicicol had increased cross-sectional areas at 10 and 21 days post-lesion compared with untreated CTX-injured muscles. Additionally, radicicol significantly increased the number of NCAM-positive satellite cells in the gastrocnemius at one day post-CTX injury. CTX-injured Muscles treated with radicicol contained more MHCn-positive regenerating myofibers compared with untreated CTX-injured muscles. These results suggest that HSPs contribute to the regeneration of myofibers damaged by CTX. Additionally, further studies should investigate the potential therapeutic effects of radicicol in skeletal muscles affected by Crotalus venom. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spermatozoa of most crustacean species are nonmotile and are packed into spermatophores. In Decapoda, spermatophores are highly variable in morphology and can be useful in the solving of taxonomic and systematic questions, especially among the Anomura. In this study, the morphology and morphometry of the spermatophores of the western Atlantic hermit crabs Pagurus brevidactylus and P criniticornis are described. The abdomen of fresh male specimens was dissected to expose the reproductive system and to extract the spermatophores, which were analyzed by stereoscopic, light, and scanning electron microscopy. The vas deferens can be divided macroscopically in three regions, all of them containing spermatophores. Tripartite spermatophores are composed of an elongated cylindrical main ampulla, a triangular accessory ampulla, a narrow cylindrical peduncle, and a round pedestal. Dimensions of the spermatophore components are positively correlated to the size of the crab. Morphological patterns observed in this study resemble those of other pagurid hermit crabs investigated to date. The morphological character distribution confirms classifications based on adult morphology and molecular analysis. J. Morphol. 272:1271-1280, 2011. (C) 2011 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MeCP2 plays a critical role in interpreting epigenetic signatures that command chromatin conformation and regulation of gene transcription. In spite of MeCP2`s ubiquitous expression, its functions have always been considered in the context of brain physiology. In this study, we demonstrate that alterations of the normal pattern of expression of MeCP2 in cardiac and skeletal tissues are detrimental for normal development. Overexpression of MeCP2 in the mouse heart leads to embryonic lethality with cardiac septum hypertrophy and dysregulated expression of MeCP2 in skeletal tissue produces severe malformations. We further show that MeCP2`s expression in the heart is developmentally regulated; further suggesting that it plays a key role in regulating transcriptional programs in non-neural tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic obstructive pulmonary disease (COPD) is associated with osteoporosis and fragility fractures. The objectives of this study were to assess static and dynamic indices of cancellous and cortical bone structure in postmenopausal women with COPD. Twenty women with COPD who had not received chronic oral glucocorticoids underwent bone biopsies after double tetracycline labeling. Biopsies were analyzed by histomorphometry and mu CT and compared with age-matched controls. Distribution of the patients according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) was: Type I (15%), Type II (40%), Type III (30%), and Type IV (15%). Mean (+/-SD) cancellous bone volume (15.20 +/- 5.91 versus 21.34 +/- 5.53%, p = .01), trabecular number (1.31 +/- 0.26 versus 1.77 +/- 0.51/mm, p = .003), and trabecular thickness (141 +/- 23 versus 174 +/- 36 mu m, p = .006) were lower in patients than in controls. Connectivity density was lower in COPD (5.56 +/- 2.78 versus 7.94 +/- 3.08 mu m, p = .04), and correlated negatively with smoking (r = -0.67; p = .0005). Trabecular separation (785 +/- 183 versus 614 +/- 136 mu m, p = .01) and cortical porosity (4.11 +/- 1.02 versus 2.32 +/- 0.94 voids/mm(2); p < .0001) were higher in COPD while cortical width (458 +/- 214 versus 762 +/- 240 mu m; p < .0001) was lower. Dynamic parameters showed significantly lower mineral apposition rate in COPD (0.56 +/- 0.16 versus 0.66 +/- 0.12 mu m/day; p = .01). Patients with more severe disease, GOLD III and IV, presented lower bone formation rate than GOLDI and II (0.028 +/- 0.009 versus 0.016 +/- 0.011 mu m(3)/mu m(2)/day;p = 04). This is the first evaluation of bone microstructure and remodeling in COPD. The skeletal abnormalities seen in cancellous and cortical bone provide an explanation for the high prevalence of vertebral fractures in this disease. (C) 2010 American Society for Bone and Mineral Research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. The objective of this study was to evaluate, using computed tomography, correlations between Hyrax appliance opening and post-SARPE skeletal changes. Study design. Fifteen patients underwent SARPE according to a specific protocol and were followed. Linear and angular measurements of the anterior, intermediate, and posterior portions of the maxilla were evaluated. The correlation between maxillary expansion and appliance opening was investigated. Results. Significant overall expansion was observed. In the anterior and intermediate portions of the maxilla, the increase in maxillary width was greater than that observed in the posterior portion. The degree of appliance opening was significantly greater than that of the skeletal expansion. Also, no linear correlation between appliance opening and regional maxillary expansion was established. Conclusion. The transverse expansion of the maxilla was less than uniform. The lack of linear correlation between appliance opening and skeletal expansion is attributable to multiple factors, including those related to the device, the surgical technique, and the craniofacial deformity itself. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008; 106: 812-819)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed at verifying the effects of phonophoresis associated with Arnica montana on the acute phase of an inflammatory muscle lesion. Forty Wistar male rats (300 +/- 50 g), of which the Tibialis Anterior muscle was surgically lesioned, were divided into four groups (n = 10 each): control group received no treatment; the ultrasound group (US) was treated in pulsed mode with 1-MHz frequency, 0.5 W/cm(2) intensity (spatial and temporal average - SATA), duty cycle of 1: 2 (2 ms on, 4 ms off, 50%), time of application 3 min per session, one session per day, for 3 days; the phonophoresis or ultrasound plus arnica (US+A) group was treated with arnica with the same US parameters plus arnica gel; and the arnica group (A) was submitted to massage with arnica gel, also for 3 min, once a day, for 3 days. Treatment started 24 h after the surgical lesion. On the 4th day after lesion creation, animals were sacrificed and sections of the lesioned, inflamed muscle were removed for quantitative (mononuclear and polymorphonuclear cell count) and qualitative histological analysis. Collected data from the 4 groups were statistically analyzed and the significance level set at p < 0.05. Results show higher mononuclear cell density in all three treated groups with no significant difference between them, but values were significantly different (p < 0.0001) when compared to control group`s. As to polymorphonuclear cell density, significant differences were found between control group (p = 0.0134) and US, US+A and A groups; the arnica group presented lesser density of polymorphonuclear cells when compared (p = 0.0134) to the other groups. No significant difference was found between US and US+A groups. While the massage with arnica gel proved to be an effective anti-inflammatory on acute muscle lesion in topic use, these results point to ineffectiveness of Arnica montana phonophoresis, US having seemingly checked or minimized its anti-inflammatory effect. (C) 2008 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To assess MHC I and II expressions in muscle fibres of juvenile dermatomyositis (JDM) and compare with the expression in polymyositis (PM), dermatomyositis (DM) and dystrophy. Patients and methods Forty-eight JDM patients and 17 controls (8 PM, 5 DM and 4 dystrophy) were studied. The mean age at disease onset was 7.1 +/- 3.0 years and the mean duration of weakness before biopsy was 9.4 +/- 12.9 months. Routine histochemistry and immunohistochemistry (StreptABComplex/HRP) for MHC I and II (Dakopatts) were performed on serial frozen muscle sections in all patients. Mann-Whitney, Kruskal Wallis, chi-square and Fisher`s exact statistical methods were used. Results MHC I expression was positive in 47 (97.9%) JDM cases. This expression was observed independent of time of disease corticotherapy previous to muscle biopsy and to the grading of inflammation observed in clinical, laboratorial and histological parameters. The expression of MHC I was similar on JDM, PM and DM, and lower in dystrophy. On the other hand, MHC II expression was positive in just 28.2% of JDM cases was correlated to histological features as inflammatory infiltrate, increased connective tissue and VAS for global degree of abnormality (p < 0.05). MCH II expression was similar in DM/PM and lower in JDM and dystrophy, and it was based on the frequency of positive staining rather than to the degree of the MCH II expression. Conclusions MHC I expression in muscle fibres is a premature and late marker of JDM patient independent to corticotherapy, and MHC II expression was lower in JDM than in PM and DM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study aimed to verify the physiological injury behavior by stretching the soleus muscle of rats, using a noninvasive experimental model. Twenty-four rats were used and divided into three groups of eight animals: control group (A), group that performed tetanus followed by electrical stimulation and a sudden dorsiflexion of the left paw performed by a device equipped with a mechanism of muscle soleus rapid stretching (B); and a group that only received the tetanus (C). Three days later, the animals were killed, and the soleus muscle was resected and divided into three segments. Morphological changes indicative of muscle damage appeared in all three segments of group B. In a lesser degree, similar changes were also detected in muscles subjected to only tetanus. This model was effective; reproducing an injury similar to what occurs in human sports injuries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to adapt a model of hind limb immobilization to newly weaned female rats and to determine the morphology of shortened soleus and plantaris muscles. Female Wistar rats were divided into three groups: control zero (n = 3) and control and free (n = 8), animals aged 21 and 31 days, respectively, submitted to no intervention, and immobilized (n = 25), animals aged 21 days submitted to immobilization for 10 days and sacrificed at 31 days of age. The device used for immobilization had advantages such as easy connection, good fit, and low cost. The immobilized rats showed a reduction in muscle fiber area and in connective tissue. The adaptation of this immobilization model originally used for adult rats was an excellent alternative for newly weaned rats and was also efficient in inducing significant hind limb disuse.