34 resultados para SYMPATHETIC PREGANGLIONIC NEURONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacurau AV, Jardim MA, Ferreira JC, Bechara LR, Bueno CR Jr, Alba-Loureiro TC, Negrao CE, Casarini DE, Curi R, Ramires PR, Moriscot AS, Brum PC. Sympathetic hyperactivity differentially affects skeletal muscle mass in developing heart failure: role of exercise training. J Appl Physiol 106: 1631-1640, 2009. First published January 29, 2009; doi:10.1152/japplphysiol.91067.2008.-Sympathetic hyperactivity (SH) is a hallmark of heart failure (HF), and several lines of evidence suggest that SH contributes to HF-induced skeletal myopathy. However, little is known about the influence of SH on skeletal muscle morphology and metabolism in a setting of developing HF, taking into consideration muscles with different fiber compositions. The contribution of SH on exercise tolerance and skeletal muscle morphology and biochemistry was investigated in 3- and 7-mo-old mice lacking both alpha(2A)- and alpha(2C)-adrenergic receptor subtypes (alpha(2A)/alpha(2C)ARKO mice) that present SH with evidence of HF by 7 mo. To verify whether exercise training (ET) would prevent skeletal muscle myopathy in advanced-stage HF, alpha(2A)/alpha(2C)ARKO mice were exercised from 5 to 7 mo of age. At 3 mo, alpha(2A)/alpha(2C)ARKO mice showed no signs of HF and preserved exercise tolerance and muscular norepinephrine with no changes in soleus morphology. In contrast, plantaris muscle of alpha(2A)/alpha(2C)ARKO mice displayed hypertrophy and fiber type shift (IIA -> IIX) paralleled by capillary rarefaction, increased hexokinase activity, and oxidative stress. At 7 mo, alpha(2A)/alpha(2C)ARKO mice displayed exercise intolerance and increased muscular norepinephrine, muscular atrophy, capillary rarefaction, and increased oxidative stress. ET reestablished alpha(2A)/alpha(2C)ARKO mouse exercise tolerance to 7-mo-old wild-type levels and prevented muscular atrophy and capillary rarefaction associated with reduced oxidative stress. Collectively, these data provide direct evidence that SH is a major factor contributing to skeletal muscle morphological changes in a setting of developing HF. ET prevented skeletal muscle myopathy in alpha(2A)/alpha(2C)ARKO mice, which highlights its importance as a therapeutic tool for HF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chicken (Gallus gallus) brains were used to investigate the typology and the immunolabel pattern for the subunits composing the AMPA-type glutamate receptors (GluR) of hindbrain neurons of the dorsal (dND) and ventral nuclei (vND) of the Deiter`s vestibular complex (CD), which is the avian correspondent of the lateral vestibular nucleus (LVN) of mammals. Our results revealed that neurons of both divisions were poor in GluR1. The vND, the GluR2/3+ and GluR4+ label presented no area or neuronal size preference, although most neurons were around 75%. The dND neurons expressing GluR2/3 are primarily around 85%, medium to large-sized 85%, and predominantly 60% located in the medial portion of the rostral pole and in the lateral portion of the caudal pole. The majority of dND neurons containing GluR4 are also around 75%, larger (70% are large and giant), exhibiting a distribution that seems to be complementary to that of GluR2/3+ neurons. This distinct arrangement indicates functional differences into and between the DC nuclei, also signaling that such variation could be attributed to the diverse nature of the subunit composition of the GluRs. Discussion addresses the morphological and functional correlation of the avian DC with the LVN of mammals in addition to the high morphological correspondence, To include these data into the modern comparative approach we propose to adopt a similar nomenclature for the avian divisions dND and vND that could be referred as dLVN and vLVN. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The caudal pressor area (CPA) is a brainstem area located close to the spinal cord. The activation of the CPA increases sympathetic activity and mean arterial pressure (MAP) by mechanisms dependent on the commissural nucleus of the solitary tract (commNTS) and rostroventrolateral medulla, however, the signals that activate the CPA to produce these responses are still unknown. Therefore, in the present study, we investigated the activity of glutamatergic and GABAergic mechanisms from the CPA and commNTS in rats exposed to hypoxia and the effects of the inhibition of CPA neurons on cardiorespiratory responses to peripheral chemoreceptor activation with i.v. sodium cyanide (NaCN). Male Sprague-Dawley rats (250-280 g, n=5-8/group) were used. In conscious rats, most of the commNTS neurons (66 +/- 11%) and part of the CPA neurons (36 +/- 7%) activated by hypoxia (8% O2) were glutamatergic (contained VGLUT2mRNA). Small part of the neurons activated during hypoxia was GABAergic (contained GAD-67mRNA) in the commNTS (9 +/- 4%) or the CPA (6 +/- 2%). In urethane anesthetized rats, the inhibition of CPA neurons with bilateral injections of muscimol (GABA-A agonist, 2 mM) reduced baseline MAP, splanchnic sympathetic nerve discharge (SND) and phrenic nerve discharge (PND). Muscimol into the CPA also reduced by around 50% the pressor and sympathoexcitatory responses and the increase in PND to peripheral chemoreceptor activation with NaCN (50 mu g/kg i.v.), without changing sympathetic baroreflex responses. These data suggest that CPA mechanisms facilitate cardiorespiratory responses to peripheral chemoreflex activation. Immunohistochemistry results also suggest that at least part of the CPA mechanisms activated by hypoxia is glutamatergic. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Burgi K, Cavalleri MT, Alves AS, Britto LRG, Antunes VR, Michelini LC. Tyrosine hydroxylase immunoreactivity as indicator of sympathetic activity: simultaneous evaluation in different tissues of hypertensive rats. Am J Physiol Regul Integr Comp Physiol 300: R264-R271, 2011. First published December 9, 2010; doi: 10.1152/ajpregu.00687.2009.-Vasomotor control by the sympathetic nervous system presents substantial heterogeneity within different tissues, providing appropriate homeostatic responses to maintain basal/stimulated cardiovascular function both at normal and pathological conditions. The availability of a reproducible technique for simultaneous measurement of sympathetic drive to different tissues is of great interest to uncover regional patterns of sympathetic nerve activity (SNA). We propose the association of tyrosine hydroxylase immunoreactivity (THir) with image analysis to quantify norepinephrine (NE) content within nerve terminals in arteries/arterioles as a good index for regional sympathetic outflow. THir was measured in fixed arterioles of kidney, heart, and skeletal muscle of WistarKyoto rats (WKY) and spontaneously hypertensive rats (SHR) (123 +/- 2 and 181 +/- 4 mmHg, 300 +/- 8 and 352 +/- 8 beats/min, respectively). There was a differential THir distribution in both groups: higher THir was observed in the kidney and skeletal muscle (similar to 3-4-fold vs. heart arterioles) of WKY; in SHR, THir was increased in the kidney and heart (2.4- and 5.3-fold vs. WKY, respectively) with no change in the skeletal muscle arterioles. Observed THir changes were confirmed by either: 1) determination of NE content (high-performance liquid chromatography) in fresh tissues (SHR vs. WKY): +34% and +17% in kidney and heart, respectively, with no change in the skeletal muscle; 2) direct recording of renal (RSNA) and lumbar SNA (LSNA) in anesthetized rats, showing increased RSNA but unchanged LSNA in SHR vs. WKY. THir in skeletal muscle arterioles, NE content in femoral artery, and LSNA were simultaneously reduced by exercise training in the WKY group. Results indicate that THir is a valuable technique to simultaneously evaluate regional patterns of sympathetic activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salivary gland dysfunction is a feature in diabetes and hypertension. We hypothesized that sodium-glucose cotransporter 1 (SGLT1) participates in salivary dysfunctions through a sympathetic- and protein kinase A (PKA)-mediated pathway. In Wistar-Kyoto (WKY), diabetic WKY (WKY-D), spontaneously hypertensive (SHR), and diabetic SHR (SHR-D) rats, PKA/SGLT1 proteins were analyzed in parotid and submandibular glands, and the sympathetic nerve activity (SNA) to the glands was monitored. Basal SNA was threefold higher in SHR (P < 0.001 vs. WKY), and diabetes decreased this activity (similar to 50%, P < 0.05) in both WKY and SHR. The catalytic subunit of PKA and the plasma membrane SGLT1 content in acinar cells were regulated in parallel to the SNA. Electrical stimulation of the sympathetic branch to salivary glands increased (similar to 30%, P < 0.05) PKA and SGLT1 expression. Immunohistochemical analysis confirmed the observed regulations of SGLT1, revealing its location in basolateral membrane of acinar cells. Taken together, our results show highly coordinated regulation of sympathetic activity upon PKA activity and plasma membrane SGLT1 content in salivary glands. Furthermore, the present findings show that diabetic- and/or hypertensive-induced changes in the sympathetic activity correlate with changes in SGLT1 expression in basolateral membrane of acinar cells, which can participate in the salivary glands dysfunctions reported by patients with these pathologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Innumerous protocols, using the mouse embryonic stem (ES) cells as model for in vitro study of neurons functional properties and features, have been developed. Most of these protocols are short lasting, which, therefore, does not allow a careful analysis of the neurons maturation, aging, and death processes. We describe here a novel and efficient long-lasting protocol for in vitro ES cells differentiation into neuronal cells. It consists of obtaining embryoid bodies, followed by induction of neuronal differentiation with retinoic acid of nonadherent embryoid bodies (three-dimensional model), which further allows their adherence and formation of adherent neurospheres (AN, bi-dimensional model). The AN can be maintained for at least 12 weeks in culture under repetitive mechanical splitting, providing a constant microenvironment (in vitro niche) for the neuronal progenitor cells avoiding mechanical dissociation of AN. The expression of neuron-specific proteins, such as nestin, sox1, beta III-tubulin, microtubule-associated protein 2, neurofilament medium protein, Tau, neuronal nuclei marker, gamma-aminobutyric acid, and 5-hydroxytryptamine, were confirmed in these cells maintained during 3 months under several splitting. Additionally, expression pattern of microtubule-associated proteins, such as lissencephaly (Lis1) and nuclear distribution element-like (Ndel1), which were shown to be essential for differentiation and migration of neurons during embryogenesis, was also studied. As expected, both proteins were expressed in undifferentiated ES cells, AN, and nonrosette neurons, although presenting different spatial distribution in AN. In contrast to previous studies, using cultured neuronal cells derived from embryonic and adult tissues, only Ndel1 expression was observed in the centrosome region of early neuroblasts from AN. Mature neurons, obtained from ES cells in this work, display ionic channels and oscillations of membrane electrical potential typical of electrically excitable cells, which is a characteristic feature of the functional central nervous system (CNS) neurons. Taken together, our study demonstrated that AN are a long-term culture of neuronal cells that can be used to analyze the process of neuronal differentiation dynamics. Thus, the protocol described here provides a new experimental model for studying neurological diseases associated with neuronal differentiation during early development, as well as it represents a novel source of functional cells that can be used as tools for testing the effects of toxins and/or drugs on neuronal cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At surgical depths of anesthesia, inhalational anesthetics cause a loss of motor response to painful stimuli (i.e., immobilization) that is characterized by profound inhibition of spinal motor circuits. Yet, although clearly depressed, the respiratory motor system continues to provide adequate ventilation under these same conditions. Here, we show that isoflurane causes robust activation of CO(2)/pH-sensitive, Phox2b-expressing neurons located in the retrotrapezoid nucleus (RTN) of the rodent brainstem, in vitro and in vivo. In brainstem slices from Phox2b-eGFP mice, the firing of pH-sensitive RTN neurons was strongly increased by isoflurane, independent of prevailing pH conditions. At least two ionic mechanisms contributed to anesthetic activation of RTN neurons: activation of an Na(+)-dependent cationic current and inhibition of a background K(+) current. Single-cell reverse transcription-PCR analysis of dissociated green fluorescent protein-labeled RTN neurons revealed expression of THIK-1 (TWIK-related halothane-inhibited K(+) channel, K(2P)13.1), a channel that shares key properties with the native RTN current (i.e., suppression by inhalational anesthetics, weak rectification, inhibition by extracellular Na(+), and pH-insensitivity). Isoflurane also increased firing rate of RTN chemosensitive neurons in urethane-anesthetized rats, again independent of CO(2) levels. In these animals, isoflurane transiently enhanced activity of the respiratory system, an effect that was most prominent at low levels of respiratory drive and mediated primarily by an increase in respiratory frequency. These data indicate that inhalational anesthetics cause activation of RTN neurons, which serve an important integrative role in respiratory control; the increased drive provided by enhanced RTN neuronal activity may contribute, in part, to maintaining respiratory motor activity under immobilizing anesthetic conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ogihara CA, Schoorlemmer GHM, Levada AC, Pithon-Curi TC, Curi R, Lopes OU, Colombari E, Sato MA. Exercise changes regional vascular control by commissural NTS in spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol 299: R291-R297, 2010. First published April 21, 2010; doi: 10.1152/ajpregu.00055.2009.-Inhibition of the commissural nucleus of the solitary tract (commNTS) induces a fall in sympathetic nerve activity and blood pressure in spontaneously hypertensive rats (SHR), which suggests that this subnucleus of the NTS is a source of sympathoexcitation. Exercise training reduces sympathetic activity and arterial pressure. The purpose of the present study was to investigate whether the swimming exercise can modify the regional vascular responses evoked by inhibition of the commNTS neurons in SHR and normotensive Wistar-Kyoto (WKY) rats. Exercise consisted of swimming, 1 h/day, 5 days/wk for 6 wks, with a load of 2% of the body weight. The day after the last exercise session, the rats were anesthetized with intravenous alpha-chloralose, tracheostomized, and artificially ventilated. The femoral artery was cannulated for mean arterial pressure (MAP) and heart rate recordings, and Doppler flow probes were placed around the lower abdominal aorta and superior mesenteric artery. Microinjection of 50 mM GABA into the commNTS caused similar reductions in MAP in swimming and sedentary SHR (-25 +/- 6 and -30 +/- 5 mmHg, respectively), but hindlimb vascular conductance increased twofold in exercised vs. sedentary SHR (54 +/- 8 vs. 24 +/- 5%). GABA into the commNTS caused smaller reductions in MAP in swimming and sedentary WKY rats (-20 +/- 4 and -16 +/- 2 mmHg). Hindlimb conductance increased fourfold in exercised vs. sedentary WKY rats (75 +/- 2% vs. 19 +/- 3%). Therefore, our data suggest that the swimming exercise induced changes in commNTS neurons, as shown by a greater enhancement of hindlimb vasodilatation in WKY vs. SHR rats in response to GABAergic inhibition of these neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the mechanisms responsible for increased blood pressure and sympathetic nerve activity (SNA) caused by 2-3 days dehydration (DH) both in vivo and in situ preparations. In euhydrated (EH) rats, systemic application of the AT(1) receptor antagonist Losartan and subsequent pre-collicular transection (to remove the hypothalamus) significantly reduced thoracic (t) SNA. In contrast, in DH rats, Losartan, followed by pre-collicular and pontine transections, failed to reduce tSNA, whereas transection at the medulla-spinal cord junction massively reduced tSNA. In DH but not EH rats, selective inhibition of the commissural nucleus tractus solitarii (cNTS) significantly reduced tSNA. Comparable data were obtained in both in situ and in vivo (anaesthetized/conscious) rats and suggest that following chronic dehydration, the control of tSNA transfers from supra-brainstem structures (e. g. hypothalamus) to the medulla oblongata, particularly the cNTS. As microarray analysis revealed up-regulation of AP1 transcription factor JunD in the dehydrated cNTS, we tested the hypothesis that AP1 transcription factor activity is responsible for dehydration-induced functional plasticity. When AP1 activity was blocked in the cNTS using a viral vector expressing a dominant negative FosB, cNTS inactivation was ineffective. However, tSNA was decreased after pre-collicular transection, a response similar to that seen in EHrats. Thus, the dehydration-induced switch in control of tSNA from hypothalamus to cNTS seems to be mediated via activation of AP1 transcription factors in the cNTS. If AP1 activity is blocked in the cNTS during dehydration, sympathetic activity control reverts back to forebrain regions. This unique reciprocating neural structure-switching plasticity between brain centres emphasizes the multiple mechanisms available for the adaptive response to dehydration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primary sensory afferent neurons modulate the hyperdynamic circulation in Cirrhotic rats with portal hypertension.The stomach of cirrhotic rats is prone to damage induced by ethanol, a phenomenon associated with reduced gastric hyperemic response to acid-back diffusion. The aim of this study was to examine the impact of ablation of capsaicin-sensitive neurons and the tachykinin NK(1) receptor antagonist A5330 on the susceptibility of the portal hypertensive gastric mucosa, to ethanol-induced injury and its effects on gastric cyclooxygenase (COX) and nitric oxide synthase (NOS) mRNA expression. Capsaicin was administered to neonatal, male, Wistar rats and the animals were allowed to grow. Cirrhosis was then induced by bile duct ligation in adult rats while controls had sham operation. Ethanol-induced gastric damage was assessed using ex vivo gastric chamber experiments. Gastric blood flow was measured as well as COX/NOS mRNA expression. Topical application of ethanol produced significant gastric damage in cirrhotic rats compared to controls, which was reversed in capsaicin- and A5330-treated animals. Mean arterial and portal pressure was normalized in capsaicin-treated cirrhotic rats. Capsaicin and A5330 administration restored gastric blood flow responses to topical application of ethanol followed by acid in cirrhotic rats. Differential COX and NOS mRNA expression was noted in bile duct ligated rats relative to controls. Capsaicin treatment significantly modified gastric eNOS/iNOS/COX-2 mRNA expression in cirrhotic rats. Capsaicin-sensitive neurons modulate the susceptibility of the portal hypertensive gastric mucosa to injury induced by ethanol via tachykinin NK(1) receptors and signalling of prostaglandin and NO production/release. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that melatonin participates in the regulation of many important physiological functions such as sleep-wakefulness cycle, motor coordination and neural plasticity, and cognition. However, as there are contradictory results regarding the melatonin production diurnal profile under alcohol consumption, the aim of this paper was to study the phenomenology and mechanisms of the putative modifications on the daily profile of melatonin production in rats submitted to chronic alcohol intake. The present results show that rats receiving 10% ethanol in drinking water for 35 days display an altered daily profile of melatonin production, with a phase delay and a reduction in the nocturnal peak. This can be partially explained by a loss of the daily rhythm and the 25% reduction in tryptophan hydroxylase activity and, mainly, by a phase delay in arylalkylamine N-acetyltransferase gene expression and a 70% reduction in its peak activity. Upstream in the melatonin synthesis pathway, the results showed that noradrenergic signaling is impaired as well, with a decrease in beta 1 and alpha 1 adrenergic receptors` mRNA contents and in vitro sustained loss of noradrenergic-stimulated melatonin production by glands from alcohol-treated rats. Together, these results confirm the alterations in the daily melatonin profile of alcoholic rats and suggest the possible mechanisms for the observed melatonin synthesis modification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eugenol is a phenylpropene obtained from the essential oils of plants such as clove and basil which has ample use in dentistry. Eugenol possesses analgesic effects that may be related to the inhibition of voltage-dependent Na(+) channels and/or to the activation of TRPV1 receptors or both. In the present study, electrophysiological parameters were taken from the compound action potentials of the isolated rat sciatic nerve and from neurons of the superior cervical ganglion (SCG) impaled with sharp microelectrodes under current-clamp conditions. In the isolated rat sciatic nerve, eugenol inhibited the compound action potential in a concentration-dependent manner. Action potentials recorded from SCG neurons were inhibited by eugenol with an IC(50) of 0.31 mM. At high concentrations (2 mM), during brief applications. eugenol caused significant action potential blockade while it did not interfere with the resting membrane potential or the membrane input resistance. Surprisingly, however, at low eugenol concentrations (0.6 mM), during long time applications, a reversible reduction (by about 50%) in the input membrane resistance was observed, suggesting the possible involvement of a secondary delayed effect of eugenol to reduce neuronal excitability. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biological systems have facility to capture salient object(s) in a given scene, but it is still a difficult task to be accomplished by artificial vision systems. In this paper a visual selection mechanism based on the integrate and fire neural network is proposed. The model not only can discriminate objects in a given visual scene, but also can deliver focus of attention to the salient object. Moreover, it processes a combination of relevant features of an input scene, such as intensity, color, orientation, and the contrast of them. In comparison to other visual selection approaches, this model presents several interesting features. It is able to capture attention of objects in complex forms, including those linearly nonseparable. Moreover, computer simulations show that the model produces results similar to those observed in natural vision systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Burst firing is ubiquitous in nervous systems and has been intensively studied in central pattern generators (CPGs). Previous works have described subtle intraburst spike patterns (IBSPs) that, despite being traditionally neglected for their lack of relation to CPG motor function, were shown to be cell-type specific and sensitive to CPG connectivity. Here we address this matter by investigating how a bursting motor neuron expresses information about other neurons in the network. We performed experiments on the crustacean stomatogastric pyloric CPG, both in control conditions and interacting in real-time with computer model neurons. The sensitivity of postsynaptic to presynaptic IBSPs was inferred by computing their average mutual information along each neuron burst. We found that details of input patterns are nonlinearly and inhomogeneously coded through a single synapse into the fine IBSPs structure of the postsynaptic neuron following burst. In this way, motor neurons are able to use different time scales to convey two types of information simultaneously: muscle contraction (related to bursting rhythm) and the behavior of other CPG neurons (at a much shorter timescale by using IBSPs as information carriers). Moreover, the analysis revealed that the coding mechanism described takes part in a previously unsuspected information pathway from a CPG motor neuron to a nerve that projects to sensory brain areas, thus providing evidence of the general physiological role of information coding through IBSPs in the regulation of neuronal firing patterns in remote circuits by the CNS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the reconstruction of visual stimuli from spike trains, representing the reconstructed stimulus by a Volterra series up to second order. We illustrate this procedure in a prominent example of spiking neurons, recording simultaneously from the two H1 neurons located in the lobula plate of the fly Chrysomya megacephala. The fly views two types of stimuli, corresponding to rotational and translational displacements. Second-order reconstructions require the manipulation of potentially very large matrices, which obstructs the use of this approach when there are many neurons. We avoid the computation and inversion of these matrices using a convenient set of basis functions to expand our variables in. This requires approximating the spike train four-point functions by combinations of two-point functions similar to relations, which would be true for gaussian stochastic processes. In our test case, this approximation does not reduce the quality of the reconstruction. The overall contribution to stimulus reconstruction of the second-order kernels, measured by the mean squared error, is only about 5% of the first-order contribution. Yet at specific stimulus-dependent instants, the addition of second-order kernels represents up to 100% improvement, but only for rotational stimuli. We present a perturbative scheme to facilitate the application of our method to weakly correlated neurons.