18 resultados para SURGICAL REMOVAL
Resumo:
This paper reports experiments involving the electrochemical combustion of humic acid (HA) and removal of algae from pond water. An electrochemical flow reactor with a boron-doped diamond film anode was used and constant current experiments were conducted in batch recirculation mode. The mass transfer characteristics of the electrochemical device were determined by voltammetric experiments in the potential region of water stability, followed by a controlled current experiment in the potential region of oxygen evolution. The average mass transfer coefficient was 5.2 x 10(-5) m s(-1). The pond water was then processed to remove HA and algae in the conditions in which the reaction combustion occurred under mass transfer control. To this end, the mass transfer coefficient was used to estimate the initial limiting current density applied in the electrolytic experiments. As expected, all the parameters analyzed here-solution absorbance at 270 nm, total phenol concentration and total organic carbon concentration-decayed according to first-order kinetics. Since the diamond film anode successfully incinerated organic matter, the electrochemical system proved to be predictable and programmable.
Resumo:
The degradation of phenol by a hybrid process (activated sludge + photocatalysis) in a high salinity medium (50 g L-1 of chloride) has been investigated. The sludge used from a municipal wastewater facility was adapted to the high salt concentrations prior to use. The photocatalytic conditions were optimized by means of a factorial experimental design. TiO2 P25 from Degussa was used as the photocatalyst. The initial phenol concentration was approximately 200 mg L-1 and complete removal of phenol and a mineralization degree above 98% were achieved within 25 h of treatment (24 h of biological treatment and I h of photocatalysis). From HPLC analyses, five hydroxylated intermediates formed during oxidation have been identified. The main ones were catechol and hydroquinone, followed by 1,2,4-benzenetriol, 2-hydroxy- 1,4-benzoquinone, and pyrogallol, in this order. No formation of organochlorine compounds was observed. Therefore, the proposed hybrid process showed itself to be suited to treat phenol in the presence of high contents of salt. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the preparation of new adsorbents derived from sugarcane bagasse and wood sawdust (Manilkara sp.) to remove zinc (II) ions from electroplating wastewater. The first part deals with the chemical modification of sugarcane bagasse and wood sawdust, using succinic anhydride to introduce carboxylic acid functions into the material. The obtained materials (modified sugarcane bagasse MB2 and modified wood sawdust MS2) were then characterized by infrared spectroscopy (IR) and used in adsorption experiments. The adsorption experiments evaluates Zn(2+) removal from aqueous single metal solution and real electroplating wastewater on both batch and continuous experiments using fixed-bed columns prepared in laboratorial scale with the obtained adsorbents. Adsorption isotherms were then developed using Langmuir model and the Thomas kinetic model. The calculated Zn(2+) adsorption capacities were found to be 145 mg/g for MS2 and 125 mg/g for MB2 in single metal aqueous solution, whereas for the industrial wastewater these values were 61 mg/g for MS2 and 55 mg/g for MB2.