50 resultados para STRUCTURE-PROPERTY RELATIONSHIP


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The secreted phospholipases A(2) (sPLA(2)s) are water-soluble enzymes that bind to the surface of both artificial and biological lipid bilayers and hydrolyze the membrane phospholipids. The tissue expression pattern of the human group IID secretory phospholipase A(2) (hsPLA(2)-IID) suggests that the enzyme is involved in the regulation of the immune and inflammatory responses. With an aim to establish an expression system for the hsPLA(2)-IID in Escherichia coli, the DNA-coding sequence for hsPLA(2)-IID was subcloned into the vector pET3a, and expressed as inclusion bodies in E. coli (BL21). A protocol has been developed to refold the recombinant protein in the presence of guanidinium hydrochloride, using a size-exclusion chromatography matrix followed by dilution and dialysis to remove the excess denaturant. After purification by cation-exchange chromatography, far ultraviolet circular dichroism spectra of the recombinant hsPLA(2)-IID indicated protein secondary structure content similar to the homologous human group IIA secretory phospholipase A(2). The refolded recombinant hsPLA(2)-IID demonstrated Ca(2+)-dependent hydrolytic activity, as measuring the release free fatty acid from phospholipid liposomes. This protein expression and purification system may be useful for site-directed mutagenesis experiments of the hsPLA(2)-IID which will advance our understanding of the structure-function relationship and biological effects of the protein. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Most physiological effects of thyroid hormones are mediated by the two thyroid hormone receptor subtypes, TR alpha and TR beta. Several pharmacological effects mediated by TR beta might be beneficial in important medical conditions such as obesity, hypercholesterolemia and diabetes, and selective TR beta activation may elicit these effects while maintaining an acceptable safety profile, To understand the molecular determinants of affinity and subtype selectivity of TR ligands, we have successfully employed a ligand- and structure-guided pharmacophore-based approach to obtain the molecular alignment of a large series of thyromimetics. Statistically reliable three-dimensional quantitative structure-activity relationship (3D-QSAR) and three-dimensional quantitative structure-selectivity relationship (3D-QSSR) models were obtained using the comparative molecular field analysis (CoMFA) method, and the visual analyses of the contour maps drew attention to a number of possible opportunities for the development of analogs with improved affinity and selectivity. Furthermore, the 3D-QSSR analysis allowed the identification of a novel and previously unmentioned halogen bond, bringing new insights to the mechanism of activity and selectivity of thyromimetics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Inhibition of microtubule function is an attractive rational approach to anticancer therapy. Although taxanes are the most prominent among the microtubule-stabilizers, their clinical toxicity, poor pharmacokinetic properties, and resistance have stimulated the search for new antitumor agents having the same mechanism of action. Discodermolide is an example of nontaxane natural product that has the same mechanism of action, demonstrating superior antitumor efficacy and therapeutic index. The extraordinary chemical and biological properties have qualified discodermolide as a lead structure for the design of novel anticancer agents with optimized therapeutic properties. In the present work, we have employed a specialized fragment-based method to develop robust quantitative structure - activity relationship models for a series of synthetic discodermolide analogs. The generated molecular recognition patterns were combined with three-dimensional molecular modeling studies as a fundamental step on the path to understanding the molecular basis of drug-receptor interactions within this important series of potent antitumoral agents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

5-HT(1A) receptor plays an important role in the delayed onset of antidepressant action of a class of selective serotonin reuptake inhibitors. Moreover, 5-HT(1A) receptor levels have been shown to be altered in patients suffering from major depression. In this work, hologram quantitative structure-activity relationship (HQSAR) studies were performed on a series of arylpiperazine compounds presenting affinity to the 5-HT(1A) receptor. The models were constructed with a training set of 70 compounds. The most significant HQSAR model (q(2) = 0.81, r(2) = 0.96) was generated using atoms, bonds, connections, chirality, and donor and acceptor as fragment distinction, with fragment size of 6-9. Predictions for an external test set containing 20 compounds are in good agreement with experimental results showing the robustness of the model. Additionally, useful information can be obtained from the 2D contribution maps.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Schistosomiasis is considered the second most important tropical parasitic disease, with severe socioeconomic consequences for millions of people worldwide. Schistosoma monsoni, one of the causative agents of human schistosomiasis, is unable to synthesize purine nucleotides de novo, which makes the enzymes of the purine salvage pathway important targets for antischistosomal drug development. In the present work, we describe the development of a pharmacophore model for ligands of S. mansoni purine nucleoside phosphorylase (SmPNP) as well as a pharmacophore-based virtual screening approach, which resulted in the identification of three thioxothiazolidinones (1-3) with substantial in vitro inhibitory activity against SmPNP. Synthesis, biochemical evaluation, and structure activity relationship investigations led to the successful development of a small set of thioxothiazolidinone derivatives harboring a novel chemical scaffold as new competitive inhibitors of SmPNP at the low-micromolar range. Seven compounds were identified with IC(50) values below 100 mu M. The most potent inhibitors 7, 10, and 17 with 1050 of 2, 18, and 38 mu M, respectively, could represent new potential lead compounds for further development of the therapy of schistosomiasis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Experimental evidence shows that the mechanism of pore formation by actinoporins is a multistep process, involving binding of the water-soluble monomer to the membrane and subsequent oligomerization on the membrane surface, leading to the formation of a functional pore. However, as for other eukaryotic pore-forming toxins, the molecular details of the mechanism of membrane insertion and oligomerization are not clear. In order to obtain further insight with regard to the structure-function relationship in sticholysins, we designed and produced three cysteine mutants of recombinant sticholysin I (rStI) in relevant functional regions for membrane interaction: StI E2C and StI F15C (in the N-terminal region) and StI R52C (in the membrane binding site). The conformational characterization derived from fluorescence and CD spectroscopic studies of StI E2C, StI F15C and StI R52C suggests that replacement of these residues by Cys in rStI did not noticeably change the conformation of the protein. The substitution by Cys of Arg(52) in the phosphocholine-binding site, provoked noticeable changes in rStI permeabilizing activity; however, the substitutions in the N-terminal region (Glu(2), Phe(15)) did not modify the toxin`s permeabilizing ability. The presence of a dimerized population stabilized by a disulfide bond in the StI E2C mutant showed higher pore-forming activity than when the protein is in the monomeric state, suggesting that sticholysins pre-ensembled at the N-terminal region could facilitate pore formation. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interaction between angiotensin II (AII, DRVYIHPF) and its analogs carrying 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) and detergents-negatively charged sodium dodecyl sulfate (SDS) and zwitterionic N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS)-was examined by means of EPR, CD, and fluorescence. EPR spectra of partially active TOAC(1)-AII and inactive TOAC(3)-AII in aqueous solution indicated fast tumbling, the freedom of motion being greater at the N-terminus. Line broadening occurred upon interaction with micelles. Below SDS critical micelle concentration, broader lines indicated complex formation with tighter molecular packing than in micelles. Small changes in hyperfine splittings evinced TOAC location at the micelle-water interface. The interaction with anionic micelles was more effective than with zwitterionic micelles. Peptide-micelle interaction caused fluorescence increase. The TOAC-promoted intramolecular fluorescence quenching was more, pronounced for TOAC(3)-AII because of the proximity between the nitroxide and Tyr(4). CD spectra showed that although both AII and TOAC(1)-AII presented flexible conformations in water, TOAC(3)-AII displayed conformational restriction because of the TOAC-imposed bend (Schreier et al., Biopolymers 2004, 74, 389). In HPS, conformational changes were observed for the labeled peptides at neutral and basic pH. In SDS, all peptides underwent pH-dependent conformational changes. Although the spectra suggested similar folds for All and TOAC(1)-AII, different conformations were acquired by TOAC(3)-AII. The membrane environment has been hypothesized to shift conformational equilibria so as to stabilize the receptor-bound conformation of ligands. The fact that TOAC(3)-AII is unable to acquire conformations similar to those of native AII and partially active TOAC(1)-AII is probably the explanation for its lack of biological activity. (C) 2009 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 92: 525-537, 2009.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The swelling of microcrystalline, native and mercerized cotton and eucalyptus celluloses by 16 aprotic solvents was investigated. The number of moles of solvent/anhydroglucose unit, nSw, correlates well with solvent molar volume, basicity and dipolarity/polarizability. Swelling is sensitive to cellulose crystallite size, surface area and the presence of its chains in parallel or anti-parallel arrangements. Use of solvatochromic parameters is a superior alternative to the use of other descriptors, such as Hildebrand`s solubility parameters and Gutmann`s donor numbers. The calculated nSw for 28 protic and aprotic solvents correlated well with their experimental counterparts, although hydrogen bond donation by the solvent was not included.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent times, increasing attention has been paid to the use of renewable resources particularly of plant origin keeping in view the ecological concerns, renewability and many governments passing laws for the use of such materials. On the other hand, despite abundant availability of lignocellulosic materials in Brazil, very few attempts have been made about their utilization, probably due to lack of sufficient structure/property data. Systematic studies to know their properties and morphology may bridge this gap while leading to value addition to these natural materials. Chemical composition, X-ray powder diffraction, and morphological studies and thermal behavior aspects in respect of banana, sugarcane bagasse sponge gourd fibers of Brazilian origin are presented. Chemical compositions of the three fibers are found to be different than those reported earlier. X-ray diffraction patterns of these three fibers exhibit mainly cellulose type I structure with the crystallinity indices of 39%, 48% and 50% respectively for these fibers. Morphological studies of the fibers revealed different sizes and arrangement of cells. Thermal stability of all the fibers is found to be around 200 degrees C. Decomposition of both cellulose and hemicelluloses in the fibers takes place at 300 degrees C and above, while the degradation of fibers takes place above 400 degrees C. These data may help finding new uses for these fibers. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present work focuses on the interaction between the zwitterionic surfactant N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS) and the giant extracellular hemoglobin of Glossoscolex paulistus (HbGp). Electronic optical absorption, fluorescence emission and circular dichroism spectroscopy techniques, together with Gel-filtration chromatography, were used in order to evaluate the oligomeric dissociation as well as the autoxidation of HbGp as a function of the interaction with HPS. A peculiar behavior was observed for the HPS-HbGp interaction: a complex ferric species formation equilibrium was promoted, as a consequence of the autoxidation and oligomeric dissociation processes. At pH 7.0, HPS is more effective up to 1 mM while at pH 9.0 the surfactant effect is more intense above 1 mM. Furthermore, the interaction of HPS with HbGp was clearly less intense than the interaction of this hemoglobin with cationic (CTAC) and anionic (SDS) surfactants. Probably, this lower interaction with HPS is due to two factors: (i) the lower electrostatic attraction between the HPS surfactant and the protein surface ionic sites when compared to the electrostatic interaction between HbGp and cationic and anionic surfactants, and (ii) the low cmc of HPS, which probably reduces the interaction of the surfactant in the monomeric form with the protein. The present work emphasizes the importance of the electrostatic contribution in the interaction between ionic surfactants and HbGp. Furthermore, in the whole HPS concentration range used in this study, no folding and autoxidation decrease induced by this surfactant were observed. This is quite different from the literature data on the interaction between surfactants and tetrameric hemoglobins, that supports the occurrence of this behavior for the intracellular hemoglobins at low surfactant concentration range. Spectroscopic data are discussed and compared with the literature in order to improve the understanding of hemoglobin-surfactant interaction as well as the acid isoelectric point (pI) influence of the giant extracellular hemoglobins on their structure-activity relationship. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Molecular orbital calculations were carried out on a set of 28 non-imidazole H(3) antihistamine compounds using the Hartree-Fock method in order to investigate the possible relationships between electronic structural properties and binding affinity for H3 receptors (pK(i)). It was observed that the frontier effective-for-reaction molecular orbital (FERMO) energies were better correlated with pK(i) values than highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy values. Exploratory data analysis through hierarchical cluster (HCA) and principal component analysis (PCA) showed a separation of the compounds in two sets, one grouping the molecules with high pK(i) values, the other gathering low pK(i) value compounds. This separation was obtained with the use of the following descriptors: FERMO energies (epsilon(FERMO)), charges derived from the electrostatic potential on the nitrogen atom (N(1)), electronic density indexes for FERMO on the N(1) atom (Sigma((FERMO))c(i)(2)). and electrophilicity (omega`). These electronic descriptors were used to construct a quantitative structure-activity relationship (QSAR) model through the partial least-squares (PLS) method with three principal components. This model generated Q(2) = 0.88 and R(2) = 0.927 values obtained from a training set and external validation of 23 and 5 molecules, respectively. After the analysis of the PLS regression equation and the values for the selected electronic descriptors, it is suggested that high values of FERMO energies and of Sigma((FERMO))c(i)(2), together with low values of electrophilicity and pronounced negative charges on N(1) appear as desirable properties for the conception of new molecules which might have high binding affinity. 2010 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The in vitro antifungal activity of six thioureido substituted amines (P1-P6) was evaluated against Candida species, including Candida albicans, C. glabrata, C. krusei and C. parapsilosis. These tri- and tetra-thioureido amino derivatives with different methylation levels were synthesised through easy synthetic routes to evaluate their antifungal properties against Candida species. Among all studied derivatives, the tri-(2-thioureido-ethyl)-amine (P1) was the most active compound inhibiting C. albicans and C. glabrata at a concentration of 0.49 mu g ml(-1); P3, the N,N `,N ``,N ```-hexamethyl-derivative, also showed inhibitory activity against C. albicans and C. glabrata, but in higher concentrations (250 mu g ml(-1)). The N,N `,N ``,N ```-tetramethylated amine (P5) only inhibited the growth of C. glabrata, but its corresponding N,N `,N ``,N ```-octamethyl derivative (P6) was also active against C. glabrata (125 mu g ml(-1)) and it was the only compound active against C. parapsilosis. P2 and P4 showed no significant antifungal activity. The structure-activity relationship of the thioureido-substituted derivatives indicates that the molecular branching and the alkylation levels can influence the antifungal activity. This study demonstrated that thioureido derivatives exhibited significant antifungal activity against Candida species and that they can be considered as a very promising bioactive lead compound to develop novel antifungal agents.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Acid soils comprise up to 50% of the world's arable lands and in these areas aluminum (Al) toxicity impairs root growth, strongly limiting crop yield. Food security is thereby compromised in many developing countries located in tropical and subtropical regions worldwide. In sorghum, SbMATE, an Al-activated citrate transporter, underlies the Alt(SB) locus on chromosome 3 and confers Al tolerance via Al-activated root citrate release. Methodology: Population structure was studied in 254 sorghum accessions representative of the diversity present in cultivated sorghums. Al tolerance was assessed as the degree of root growth inhibition in nutrient solution containing Al. A genetic analysis based on markers flanking Alt(SB) and SbMATE expression was undertaken to assess a possible role for Alt(SB) in Al tolerant accessions. In addition, the mode of gene action was estimated concerning the Al tolerance trait. Comparisons between models that include population structure were applied to assess the importance of each subpopulation to Al tolerance. Conclusion/Significance: Six subpopulations were revealed featuring specific racial and geographic origins. Al tolerance was found to be rather rare and present primarily in guinea and to lesser extent in caudatum subpopulations. Alt(SB) was found to play a role in Al tolerance in most of the Al tolerant accessions. A striking variation was observed in the mode of gene action for the Al tolerance trait, which ranged from almost complete recessivity to near complete dominance, with a higher frequency of partially recessive sources of Al tolerance. A possible interpretation of our results concerning the origin and evolution of Al tolerance in cultivated sorghum is discussed. This study demonstrates the importance of deeply exploring the crop diversity reservoir both for a comprehensive view of the dynamics underlying the distribution and function of Al tolerance genes and to design efficient molecular breeding strategies aimed at enhancing Al tolerance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cationic lipids-DNA complexes (lipoplexes) have been used for delivery of nucleic acids into cells in vitro and in vivo. Despite the fact that, over the last decade, significant progress in the understanding of the cellular pathways and mechanisms involved in lipoplexes-mediated gene transfection have been achieved, a convincing relationship between the structure of lipoplexes and their in vivo and in vitro transfection activity is still missing. How does DNA affect the lipid packing and what are the consequences for transfection efficiency is the point we want to address here. We investigated the bilayer organization in cationic liposomes by electron spin resonance (ESR). Phospholipids spin labeled at the 5th and 16th carbon atoms were incorporated into the DNA/diC14-amidine complex. Our data demonstrate that electrostatic interactions involved in the formation of DNA-cationic lipid complex modify the packing of the cationic lipid membrane. DNA rigidifies the amidine fluid bilayer and fluidizes the amidine rigid bilayer just below the gel-fluid transition temperature. These effects were not observed with single nucleotides and are clearly related to the repetitive charged motif present in the DNA chain and not to a charge-charge interaction. These modifications of the initial lipid packing of the cationic lipid may reorient its cellular pathway towards different routes. A better knowledge of the cationic lipid packing before and after interaction with DNA may therefore contribute to the design of lipoplexes capable to reach specific cellular targets. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Garciniaphenone (=rel-(1R,5R,7R)-3-benzoyl-4-hydroxy-8,8-dimethyl-1,7-bis(3-methylbut-2-en-1-yl)bicyclo[3.3.1]non-3-ene-2,9-dione; 1). a novel natural product, was isolated from a hexane extract of Garcinia brasiliensis fruits. The crystal structure of 1 as well as the selected geometrical and Configurational features were compared with those of known related polyprenylated benzophenones. Garciniaphenone is the first representative of polyprenylated benzophenones without a prenyl substituent at C(5). Notably, the absence of a 5-prenyl substituent has an impact on the molecular geometry. The tautomeric form of 1 in the solid state was readily established by a residual-electronic-density map generated by means of a difference Fourier analysis, and there is an entirely delocalized six-membered chelate ring encompassing the keto-enol moiety. The configuration at C(7) was used to rationalize the nature of the keto-enol tautomeric form within 1. The intermolecular array in the network is maintained by nonclassical intermolecular H-bonds.