79 resultados para SOLID-STATE NMR SPECTROSCOPY
Resumo:
This paper presents a description of nuclear magnetic resonance (NMR) of quadrupolar systems using the Holstein-Primakoff (HP) formalism and its analogy with a Bose-Einstein condensate (BEC) system. Two nuclear spin systems constituted of quadrupolar nuclei I=3/2 ((23)Na) and I=7/2 ((133)Cs) in lyotropic liquid crystals were used for experimental demonstrations. Specifically, we derived the conditions necessary for accomplishing the analogy, executed the proper experiments, and compared with quantum mechanical prediction for a Bose system. The NMR description in the HP representation could be applied in the future as a workbench for BEC-like systems, where the statistical properties may be obtained using the intermediate statistic, first established by Gentile. The description can be applied for any quadrupolar systems, including new developed solid-state NMR GaAS nanodevices.
Resumo:
Enzyme production is a growing field in biotechnology and increasing attention has been devoted to the solid-state fermentation (SSF) of lignocellulosic biomass for production of industrially relevant lignocellulose deconstruction enzymes, especially manganese-peroxidase (MnP), which plays a crucial role in lignin degradation. However, there is a scarcity of studies regarding extraction of the secreted metabolities that are commonly bound to the fermented solids, preventing their accurate detection and limiting recovery efficiency. In the present work, we assessed the effectiveness of extraction process variables (pH, stirring rate, temperature, and extraction time) on recovery efficiency of manganese-peroxidase (MnP) obtained by SSF of eucalyptus residues using Lentinula edodes using statistical design of experiments. The results from this study indicated that of the variables studied, pH was the most significant (p < 0.05%) parameter affecting MnP recovery yield, while temperature, extraction time, and stirring rate presented no statistically significant effects in the studied range. The optimum pH for extraction of MnP was at 4.0-5.0, which yielded 1500-1700 IU kg (1) of enzyme activity at extraction time 4-5 h, under static condition at room temperature. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Inclusion complexes of Lippia sidoides essential oil and beta-cyclodextrin were obtained by slurry method and its solid powdered form was prepared using spray drying. The influence of the spray drying, as well as the different essential oil:beta-cyclodextrin ratio on the characteristics of the final product was investigated. With regard to the total oil retention 1:10 mass/mass ratio as optimal was found between the essential oil and beta-cyclodextrin. Thermoanalytical techniques (TG, EGD, TG-MS) were used to support the formation of inclusion complex and to examine their physicochemical properties after accelerated storage conditions. It may be assumed that the thermal properties of the complexes were influenced not only by the different essential oil/beta-cyclodextrin ratio but also by the storage conditions. In the aspect of their thermal stabilities, complex prepared with 1:10 m/m ratio (essential oil: beta-cyclodextrin) was the most stable one.
Resumo:
The present work describes the crystal structure, vibrational spectra, and theoretical calculations of ammonium salts of 3,5-bis-(dicyanomethylene)cyclopentane-1,2,4-trionate, (NH(4))(2)(C(11)N(4)O(3)) [(NH(4))(2)CV], also known as ammonium croconate violet. This compound crystallizes in triclinic P (1) over bar and contains two water molecules per unit formula. The crystal packing is stabilized by hydrogen bonds involving water molecules and ammonium cations, giving rise to a 3D polymeric arrangement. In this structure, a pi-stacking interaction is not observed, as the smaller centroid-centroid distance is 4.35 angstrom. Ab initio electronic structure calculations under periodic boundary conditions were performed to predict vibrational and electronic properties. The vibrational analysis was used to assist the assignments of the Raman and infrared bands. The solid structure was optimized and characterized as a minimum in the potential-energy surface. The stabilizing intermolecular hydrogen bonds in the crystal Structure were characterized by difference charge-density analysis. The analysis of the density of states of (NH(4))(2)CV gives an energy gap of 1.4 eV with a significant contribution of carbon and nitrogen 2p states for valence and conduction bands.
Resumo:
This study describes the production of xylanases from Aspergillus niveus, A. niger, and A. ochraceus under solid-state fermentation using agro-industrial residues as substrates. Enzyme production was improved using a mixture of wheat bran and yeast extract or peptone. When a mixture of corncob and wheat bran was used, xylanase production from A. niger and A. ochraceus increased by 18%. All cultures were incubated at 30 A degrees C at 70-80% relative humidity for 96 h. For biobleaching assays, 10 or 35 U of xylanase/g dry cellulose pulp were incubated at pH 5.5 for 1 or 2 h, at 55 A degrees C. The delignification efficiency was 20%, the brightness (percentage of ISO) increased two to three points and the viscosity was maintained confirming the absence of cellulolytic activity. These results indicated that the use of xylanases could help to reduce the amount of chlorine compounds used in cellulose pulp treatment.
Resumo:
In this paper, we propose a new method of measuring the very slow paramagnetic ion diffusion coefficient using a commercial high-resolution spectrometer. If there are distinct paramagnetic ions influencing the hydrogen nuclear magnetic relaxation time differently, their diffusion coefficients can be measured separately. A cylindrical phantom filled with Fricke xylenol gel solution and irradiated with gamma rays was used to validate the method. The Fricke xylenol gel solution was prepared with 270 Bloom porcine gelatin, the phantom was irradiated with gamma rays originated from a (60)Co source and a high-resolution 200 MHz nuclear magnetic resonance (NMR) spectrometer was used to obtain the phantom (1)H profile in the presence of a linear magnetic field gradient. By observing the temporal evolution of the phantom NMR profile, an apparent ferric ion diffusion coefficient of 0.50 mu m(2)/ms due to ferric ions diffusion was obtained. In any medical process where the ionizing radiation is used, the dose planning and the dose delivery are the key elements for the patient safety and success of treatment. These points become even more important in modern conformal radio therapy techniques, such as stereotactic radiosurgery, where the delivered dose in a single session of treatment can be an order of magnitude higher than the regular doses of radiotherapy. Several methods have been proposed to obtain the three-dimensional (3-D) dose distribution. Recently, we proposed an alternative method for the 3-D radiation dose mapping, where the ionizing radiation modifies the local relative concentration of Fe(2+)/Fe(3+) in a phantom containing Fricke gel and this variation is associated to the MR image intensity. The smearing of the intensity gradient is proportional to the diffusion coefficient of the Fe(3+) and Fe(2+) in the phantom. There are several methods for measurement of the ionic diffusion using NMR, however, they are applicable when the diffusion is not very slow.
Resumo:
This work reports on the excited-state absorption spectrum of oxidized Cytochrome c (Fe(3+)) dissolved in water, measured with the Z-scan technique with femtosecond laser pulses. The excited-state absorption cross-sections between 460 and 560 nm were determined with the aid of a three-energy-level model. Reverse saturable absorption was observed below 520 nm, while a saturable absorption process occurs in the Q-band, located around 530 nm. Above 560 nm, a competition between saturable absorption and two-photon absorption was inferred. These results show that Cytochrome c presents distinct nonlinear behaviors, which may be useful to study electron transfer chemistry in proteins by one- and two-photon absorption. In addition, owing to these nonlinear optical features, this molecule may be employed in applications involving photodynamics therapy and saturable absorbers. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Fixation of CO(2) is one of the most important priorities of the scientific community dedicated to reduce global warming. In this work, we propose new methods for the fixation of CO2 using the guanidine bases tetramethylguanidine (TMG) and 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]-pyrimidine (TBD). In order to understand the reactions occurring during the CO(2) fixation and release processes, we employed several experimental methods, including solution and solid-state NMR, FTIR, and coupled TGA-FTIR. Quantum mechanical NMR calculations were also carried out. Based on the results obtained, we concluded that CO(2) fixation with both TMG and TBD guanidines is a kinetically reversible process, and the corresponding fixation products have proved to be useful as transcarboxylating compounds. Afterward, CO(2) thermal releasing from this fixation product with TBD was found to be an interesting process for CO(2) capture and isolation purposes. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The local structure of an ion-conducting glass with nominal composition 50B(2)O(3)-10PbO-40LiF has been investigated by complementary (7)Li, (11)B, (19)F, and (207)Pb single- and double-resonance experiments. The results give insight into the structural role of the lithium fluoride additive in borate glasses: (1) LiF is seen to actively participate in the network transformation process contributing to the conversion of three- into four-coordinate boron units, as shown by (11)B single-resonance as well as by (11)B{(19)F} and (19)F{(11)B} double-resonance experiments. (2) (19)F signal quantification experiments suggest substantial fluoride loss, presumably caused by formation of volatile BF(3). A part of the fluoride remains in the dopant role, possibly in the form of small LiF-like cluster domains, which serve as a mobile ion supply. (3) The extent of lithium-fluorine and lead-fluorine interactions has been characterized by (7)Li{(19)F} and (207)Pb{(19)F} REDOR and SEDOR experiments. On the basis of these results, a quantitative structural description of this system has been developed.
Resumo:
We present a minor but essential modification to the CODEX 1D-MAS exchange experiment. The new CONTRA method, which requires minor changes of the original sequence only, has advantages over the previously introduced S-CODEX, since it is less sensitive to artefacts caused by finite pulse lengths. The performance of this variant, including the finite pulse effect, was confirmed by SIMPSON calculations and demonstrated on a number of dynamic systems. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Several experiments (time-resolved Z-scan experiments based on pulsed and CW pump lasers, time-resolved divergence diagnostics) have been performed to examine and clarify the question of the converging or diverging population lensing effect occurring in a Cr(3+):Al(2)O(3) ruby laser. The dynamics of the laser far-field divergence of such a laser indeed indicated initially a diverging effect while Z-scan measurements conclude to a converging one. The origin of this discrepancy is thus analysed and elucidated here by introducing the general concept of correlation collapse between the centre and the wings of a laser beam having some clipping. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The crystal structure and the vibrational spectrum of a potential drug for Chagas`s disease treatment, the (E)-isomer of phenylethenylbenzofuroxan 1 (5(6)(E)-[(2-phenylethenyl)]benzo[1,2-c]1,2,5-oxadiazole N-oxide), are reported. In order to provide insights into structural relationships, quantum mechanical calculations were employed starting from crystal structure. These results have given theoretical support to state interesting structural features, such as the effect of some intermolecular contacts on the molecule conformation and the electronic delocalization decreasing through atoms of the benzofuroxan moiety. Furthermore, the MOGUL comparative analysis in the Cambridge Structural Database provided additional evidences on these structural behaviors of compound 1. Intermolecular contacts interfere on the intramolecular geometry, as, for instance, on the phenyl group orientation, which is twisted by 12.32(6)A degrees from the ethenylbenzofuroxan plane. The experimental Raman spectrum of compound 1 presents unexpected frequency shift and also anomalous Raman activities. At last, the molecule skeleton deformation and the characteristic vibrational modes were correlated by matching the experimental Raman spectrum to the calculated one.
Resumo:
For the first time, crystals of suitable size for X-ray diffractometry structure determination (Dian important anti-HI V drug were prepared under solvothermal conditions. In this study, the crystal structure of didanosine (2`,3`-dideoxyinosine, ddI) in the form of a hydrate was determined using single-crystal X-ray diffractometry. Powder X-ray diffraction analysis revealed that the solid-state phase of the drug incorporated into pharmaceutical solid dosage forms is isostructural to the solvothermally prepared ddI material, even though they do not exhibit an identical chemical composition due to different water fractions occupying hydrophobic channels formed within the crystal lattice. Two ddI conformers are present in the structure, in agreement with a previous structure elucidation attempt. Concerning the keto enol equilibrium of ddI, our crystal data and vibrational characterizations by Fourier transform infrared (FTIR) and FT-Raman spectroscopy techniques were conclusive to state that both conformers exist in the keto form, contrary to solid-state NMR spectroscopic assignments that suggested ddI molecules occur as enol tautomers. In addition, characterizations by thermal (differential scanning calorimetry) and spectroscopic techniques allowed us to understand the structural similarities and the differences related to the hydration pattern of the nonstoichiometric hydrates.
Resumo:
The electroanalytical techniques are very promissing to perform the quality control of crude vegetable. Solid State Differential Pulse Voltammetry in the supporting electrolyte is able to detect the oxidation signals of the active material, which can be used as a parameter to identify the type of crude vegetable and its antioxidant activity. The working electrode consisted in a carbon paste electrode modified with the powder of vegetable raw material (EMF). The electrochemical measurements were performed in a cell containing the working (EMF), reference (Ag/AgCl, KClsat) and auxiliary (Pt) electrodes.
Resumo:
6 x 8cm(2) electrochromic devices (ECDs) with the configuration K-glass/EC-layer/electrotype/ion-storage (IS) layer/K-glass, have been assembled using Nb2O5:Mo EC layers, a (CeO2)(0.81)-TiO2 IS-layer and a new gelatin electrolyte containing Li+ ions. The structure of the electrolyte is X-ray amorphous. Its ionic conductivity passed by a maximum of 1.5 x 10(-5) S/CM for a lithium concentration of 0.3g/15ml. The value increases with temperature and follows an Arrhenius law with an activation energy of 49.5 kJ/mol. All solid-state devices show a reversible gray coloration, a long-term stability of more than 25,000 switching cycles (+/- 2.0 V/90 s), a transmission change at 550 nm between 60% (bleached state) and 40% (colored state) corresponding to a change of the optical density (Delta OD = 0. 15) with a coloration efficiency increasing from 10cm(2)/C (initial cycle) to 23cm(2)/C (25,000th cycle). (c) 2007 Elsevier B.V. All rights reserved.