21 resultados para SEED-EATING


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In networks of plant-animal mutualisms, different animal groups interact preferentially with different plants, thus forming distinct modules responsible for different parts of the service. However, what we currently know about seed dispersal networks is based only on birds. Therefore, we wished to fill this gap by studying bat-fruit networks and testing how they differ from bird-fruit networks. As dietary overlap of Neotropical bats and birds is low, they should form distinct mutualistic modules within local networks. Furthermore, since frugivory evolved only once among Neotropical bats, but several times independently among Neotropical birds, greater dietary overlap is expected among bats, and thus connectance and nestedness should be higher in bat-fruit networks. If bat-fruit networks have higher nestedness and connectance, they should be more robust to extinctions. We analyzed 1 mixed network of both bats and birds and 20 networks that consisted exclusively of either bats (11) or birds (9). As expected, the structure of the mixed network was both modular (M = 0.45) and nested (NODF = 0.31); one module contained only birds and two only bats. In 20 datasets with only one disperser group, bat-fruit networks (NODF = 0.53 +/- A 0.09, C = 0.30 +/- A 0.11) were more nested and had a higher connectance than bird-fruit networks (NODF = 0.42 +/- A 0.07, C = 0.22 +/- A 0.09). Unexpectedly, robustness to extinction of animal species was higher in bird-fruit networks (R = 0.60 +/- A 0.13) than in bat-fruit networks (R = 0.54 +/- A 0.09), and differences were explained mainly by species richness. These findings suggest that a modular structure also occurs in seed dispersal networks, similar to pollination networks. The higher nestedness and connectance observed in bat-fruit networks compared with bird-fruit networks may be explained by the monophyletic evolution of frugivory in Neotropical bats, among which the diets of specialists seem to have evolved from the pool of fruits consumed by generalists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tropical forests have been subject to intense hunting of medium and large frugivores that are important in dispersing large-seeded species. It has been hypothesized that in areas with extinction or low abundance of medium and large-bodied animals the density of small rodents may increase. Therefore, this increment in the density of small rodents may compensate for the absence or low abundance of medium and large frugivores on seed removal and seed dispersal. Here, we fill up this gap in the literature by determining if seed removal, seed dispersal, and seed predation by small rodents (spiny rats, Trinomys inheringi and squirrels, Sciurus ingrami) are maintained in defaunated areas. We accessed seed removal, seed dispersal, seed predation, and seedling recruitment of an endemic Atlantic rainforest palm, Astrocaryum aculeatissimum, in a gradient of abundance of agoutis. We found that seed removal, scatter hoarding, and seed predation increase with the abundance of agoutis. In contrast, the proportion of dispersed but non-cached seeds decreased with the abundance of agoutis. We did not find any effect of the abundance of agoutis on seed dispersal distance, but we did find a positive trend on the density of seedlings. We concluded that small rodents do not compensate the low abundance of agoutis on seed removal, scatter hoarding, and seed predation of this palm tree. Moreover, areas in which agoutis are already extinct did not present any seed removal or scatter hoarding, not even by small rodents. This study emphasizes both the importance of agoutis in dispersing seeds of A. aculeatissimum and the collapse in seed dispersal of this palm in areas where agoutis are already extinct.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

According to most studies on seed dispersal in tropical forests, mammals and birds are considered the main dispersal agents and the role played by other animal groups remains poorly explored. We investigate qualitative and quantitative components of the role played by the tortoise Chelonoidis denticulata in seed dispersal in southeastern Amazon, and the influence of seasonal variation in tortoise movement patterns on resulting seed shadows. Seed shadows produced by this tortoise were estimated by combining information on seed passage times through their digestive tract, which varied from 3 to 17 days, with a robust dataset on movements obtained from 18 adult C. denticulata monitored with radio transmitters and spoon-and-line tracking devices. A total of 4,206 seeds were found in 94 collected feces, belonging to 50 seed morphotypes of, at least, 25 plant genera. Very low rates of damage to the external structure of the ingested seeds were observed. Additionally, results of germination trials suggested that passage of seeds through C. denticulata`s digestive tract does not seem to negatively affect seed germination. The estimated seed shadows are likely to contribute significantly to the dispersal of seeds away from parent plants. During the dry season seeds were dispersed, on average, 174.1 m away from the location of fruit ingestion; during the rainy season, this mean dispersal distance increased to 276.7 m. Our results suggest that C. denticulata plays an important role in seed dispersal in Amazonian forests and highlight the influence of seasonal changes in movements on the resulting seed shadows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutualistic interactions involving pollination and ant-plant mutualistic networks typically feature tightly linked species grouped in modules. However, such modularity is infrequent in seed dispersal networks, presumably because research on those networks predominantly includes a single taxonomic animal group (e.g. birds). Herein, for the first time, we examine the pattern of interaction in a network that includes multiple taxonomic groups of seed dispersers, and the mechanisms underlying modularity. We found that the network was nested and modular, with five distinguishable modules. Our examination of the mechanisms underlying such modularity showed that plant and animal trait values were associated with specific modules but phylogenetic effect was limited. Thus, the pattern of interaction in this network is only partially explained by shared evolutionary history. We conclude that the observed modularity emerged by a combination of phylogenetic history and trait convergence of phylogenetically unrelated species, shaped by interactions with particular types of dispersal agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivation: DNA assembly programs classically perform an all-against-all comparison of reads to identify overlaps, followed by a multiple sequence alignment and generation of a consensus sequence. If the aim is to assemble a particular segment, instead of a whole genome or transcriptome, a target-specific assembly is a more sensible approach. GenSeed is a Perl program that implements a seed-driven recursive assembly consisting of cycles comprising a similarity search, read selection and assembly. The iterative process results in a progressive extension of the original seed sequence. GenSeed was tested and validated on many applications, including the reconstruction of nuclear genes or segments, full-length transcripts, and extrachromosomal genomes. The robustness of the method was confirmed through the use of a variety of DNA and protein seeds, including short sequences derived from SAGE and proteome projects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Incubation of T. cruzi epimastigotes with the lectin Cramoll 1,4 in Ca(2+) containing medium led to agglutination and inhibition of cell proliferation. The lectin (50 A mu g/ml) induced plasma membrane permeabilization followed by Ca(2+) influx and mitochondrial Ca(2+) accumulation, a result that resembles the classical effect of digitonin. Cramoll 1,4 stimulated (five-fold) mitochondrial reactive oxygen species (ROS) production, significantly decreased the electrical mitochondrial membrane potential (Delta I(m)) and impaired ADP phosphorylation. The rate of uncoupled respiration in epimastigotes was not affected by Cramoll 1,4 plus Ca(2+) treatment, but oligomycin-induced resting respiration was 65% higher in treated cells than in controls. Experiments using T. cruzi mitochondrial fractions showed that, in contrast to digitonin, the lectin significantly decreased Delta I(m) by a mechanism sensitive to EGTA. In agreement with the results showing plasma membrane permeabilization and impairment of oxidative phosphorylation by the lectin, fluorescence microscopy experiments using propidium iodide revealed that Cramoll 1,4 induced epimastigotes death by necrosis.