383 resultados para S-phenyl-mercapturic acid determination
Resumo:
An analytical procedure based on microwave-assisted digestion with diluted acid and a double cloud point extraction is proposed for nickel determination in plant materials by flame atomic absorption spectrometry. Extraction in micellar medium was successfully applied for sample clean up, aiming to remove organic species containing phosphorous that caused spectral interferences by structured background attributed to the formation of PO species in the flame. Cloud point extraction of nickel complexes formed with 1,2-thiazolylazo-2-naphthol was explored for pre-concentration, with enrichment factor estimated as 30, detection limit of 5 mu g L(-1) (99.7% confidence level) and linear response up to 80 mu g L(-1). The accuracy of the procedure was evaluated by nickel determinations in reference materials and the results agreed with the certified values at the 95% confidence level.
Resumo:
The asymmetric unit of the title compound, C(8)H(8)O(2), contains two crystallographically independent molecules, which form dimers linked by O center dot center dot center dot H-O hydrogen bonds. The benzene rings in the dimers are inclined at a dihedral angle of 7.30 (8)degrees and both methyl groups display rotational disorder. This redetermination results in a crystal structure with significantly higher precision than the original determination [Ellas & Garcia-Blanco (1963). Acta Cryst. 16, 434], in which the authors reported only the unit-cell parameters and space group, without any detailed information on the atomic arrangement. In the crystal, dimers are connected by weak C-H center dot center dot center dot O interactions, forming R(2)(2)(10) and R(4)(4)(18) rings along [110] and an infinite zigzag chain of dimers along the [001] direction also occurs.
Resumo:
The application of laser induced breakdown spectrometry (LIBS) aiming the direct analysis of plant materials is a great challenge that still needs efforts for its development and validation. In this way, a series of experimental approaches has been carried out in order to show that LIBS can be used as an alternative method to wet acid digestions based methods for analysis of agricultural and environmental samples. The large amount of information provided by LIBS spectra for these complex samples increases the difficulties for selecting the most appropriated wavelengths for each analyte. Some applications have suggested that improvements in both accuracy and precision can be achieved by the application of multivariate calibration in LIBS data when compared to the univariate regression developed with line emission intensities. In the present work, the performance of univariate and multivariate calibration, based on partial least squares regression (PLSR), was compared for analysis of pellets of plant materials made from an appropriate mixture of cryogenically ground samples with cellulose as the binding agent. The development of a specific PLSR model for each analyte and the selection of spectral regions containing only lines of the analyte of interest were the best conditions for the analysis. In this particular application, these models showed a similar performance. but PLSR seemed to be more robust due to a lower occurrence of outliers in comparison to the univariate method. Data suggests that efforts dealing with sample presentation and fitness of standards for LIBS analysis must be done in order to fulfill the boundary conditions for matrix independent development and validation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The aim of this work is to demonstrate the feasibility of laser induced breakdown spectrometry (LIBS) for the determination of macro and micronutrients in multielement tablets. The experimental setup was designed by using a laser Q-switch (Nd:YAG, 10 Hz, lambda = 1064 nm) and the emission signals were collected by lenses into an optical fiber coupled to an echelle spectrometer equipped with a high-resolution intensified charge coupled device (ICCD). Tablets were cryogenically ground and thereafter pelletized before LIBS analysis. Calibration curves were made by employing samples and mixtures of commercial multielement tablets with binders at different ratios. Best results were achieved by using the following experimental conditions: 29 J cm(-2) laser fluence, 165 mm lens to sample distance (f = 200 mm), 2.0 mu s delay time, 5.0 mu s integration time and 5 accumulated laser pulses. In general, the results obtained by the proposed LIBS procedure were in agreement with those obtained by ICP OES from the corresponding acid digests and coefficients variation of LIBS measurements varied from 2 to 16%. The metrological figures of merit indicate that LIBS fits for the intended purposes, and can be recommended for the analysis of multielement tablets and similar matrices aiming the determination of Ca, Cu, Fe, Mg, Mn, P and Zn.
Resumo:
A fully automated methodology was developed for the determination of the thyroid hormones levothyroxine (T4) and liothyronine (T3). The proposed method exploits the formation of highly coloured charge-transfer (CT) complexes between these compounds, acting as electron donors, and pi-acceptors such as chloranilic acid (CIA) and 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ). For automation of the analytical procedure a simple, fast and versatile single interface flow system (SIFA)was implemented guaranteeing a simplified performance optimisation, low maintenance and a cost-effective operation. Moreover, the single reaction interface assured a convenient and straightforward approach for implementing job`s method of continuous variations used to establish the stoichiometry of the formed CT complexes. Linear calibration plots for levothyroxine and liothyronine concentrations ranging from 5.0 x 10(-5) to 2.5 x 10(-4) mol L(-1) and 1.0 x 10(-5) to 1.0 x 10(-4) mol L(-1), respectively, were obtained, with good precision (R.S.D. <4.6% and <3.9%) and with a determination frequency of 26 h(-1) for both drugs. The results obtained for pharmaceutical formulations were statistically comparable to the declared hormone amount with relative deviations lower than 2.1%. The accuracy was confirmed by carrying out recovery studies, which furnished recovery values ranging from 96.3% to 103.7% for levothyroxine and 100.1% for liothyronine. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The performance of laser-induced breakdown spectrometry (LIBS) for the determination of Ba, Cd, Cr and Pb in toys has been evaluated by using a Nd:YAG laser operating at 1064 nm and an Echelle spectrometer with intensified charge-coupled device detector. Samples were purchased in different cities of Sao Paulo State market and analyzed directly without sample preparation. Laser-induced breakdown spectrometry experimental conditions (number of pulses, delay time. integration time gate and pulse energy) were optimized by using a Doehlert design. Laser-induced breakdown spectrometry signals correlated reasonably well with inductively coupled plasma optical emission spectrometry (ICP OES) concentrations after microwave-assisted acid digestion of selected samples. Thermal analysis was used for polymer identification and scanning electron microscopy to Visualize differences in crater geometry of different polymers employed for toy fabrication. Results indicate that laser-induced breakdown spectrometry can be proposed as a rapid screening method for investigation of potentially toxic elements in toys. The unique application of laser-induced breakdown spectrometry for identification of contaminants in successive layers of ink and polymer is also demonstrated. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Laser induced breakdown spectroscopy (LIBS) has been evaluated for the determination of micronutrients (B, Cu, Fe, Mn and Zn) in pellets of plant materials, using NIST, BCR and GBW biological certified reference materials for analytical calibration. Pellets of approximately 2 mm thick and 15 mm diameter were prepared by transferring 0.5 g of powdered material to a 15 mm die set and applying 8.0 tons cm(-2). An experimental setup was designed by using a Nd:YAG laser operating at 1064 nm (200 mJ per pulse, 10 Hz) and an Echelle spectrometer with ICCD detector. Repeatability precision varied from 4 to 30% from measurements obtained in 10 different positions (8 laser shots per test portion) in the same sample pellet. Limits of detection were appropriate for routine analysis of plant materials and were 2.2 mg kg(-1) B, 3.0 mg kg(-1) Cu, 3.6 mg kg(-1) Fe, 1.8 mg kg(-1) Mn and 1.2 mg kg(-1) Zn. Analysis of different plant samples were carried out by LIBS and results were compared with those obtained by ICP OES after wet acid decomposition. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The formation of the Mn(III)/EDTA complex in a flow system with solenoid micro-pumps was exploited for fast manganese determination in freshwater. Manganese(II) was oxidized in a solid-phase reactor containing lead dioxide immobilized on polyester. Long pathlength spectrophotometry was exploited to increase sensitivity, aiming to reach the threshold limit established by environmental legislation. A linear response was observed from 25 to 1500 mu g L(-1), with a detection limit of 6 mu g L(-1) (99.7% confidence level). Sample throughput and coefficient of variation were 36 samples/h and 2.6% (n = 10), respectively. EDTA consumption and waste generation were estimated as 500 mu g and 3 mL per determination, respectively. The amount of Pb in the residue corresponds to 250 mu g per determination and a solid-phase reactor could be used for up to 1600 determinations. Adsorption in active charcoal avoided interferences caused by organic matter and the developed procedure was successfully applied for determination of manganese in freshwater samples. Results were in agreement with those attained by GFAAS at the 95% confidence level. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Laser induced breakdown spectroscopy (LIBS) has become an analytical tool for the direct analysis of a large variety of materials in order to provide qualitative and/or quantitative information. However, there is a lack of information for LIBS analysis of agricultural and environmental samples. In this work a LIBS system has been evaluated for the determination of macronutrients (P, K, Ca, Mg) in pellets of vegetal reference materials. An experimental setup was designed by using a Nd:YAG laser operating at 1064 nm and an Echelle spectrometer with ICCD detector. The plasma temperature was estimated by Boltzmann plots and instrumental paragmeters such as delay time, lens-to-sample distance and pulse energy were evaluated. Certified reference materials as well as reference materials were used for analytical calibrations of P, K, Ca, and Mg. Most results of the direct analysis of plant samples by LIBS were in reasonable agreement with those obtained by ICP OES after wet acid decomposition. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A flow system designed with solenoid micro-pumps is proposed for the determination of paraquat in natural waters. The procedure involves the reaction of paraquat with dehydroascorbic acid followed by spectrophotometric measurements. The proposed procedure minimizes the main drawbacks related to the standard chromatographic procedure and to flow analysis and manual methods with spectrophotometric detection based on the reaction with sodium dithionite, i.e. high solvent consumption and waste generation and low sampling rate for chromatography and high instability of the reagent in the spectrophotometric procedures. A home-made 10-cm optical-path flow cell was employed for improving sensitivity and detection limit. Linear response was observed for paraquat concentrations in the range 0.10-5.0 mg L-1. The detection limit (99.7% confidence level), sampling rate and coefficient of variation (n = 10) were estimated as 22 mu g L-1, 63 measurements per hour and 1.0%, respectively. Results of determination of paraquat in natural water samples were in agreement with those achieved by the chromatographic reference procedure at the 95% confidence level. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
A procedure for partial digestion of bovine tissue is proposed using polytetrafluoroethylene (PTFE) microvessels inside a baby-bottle sterilizer under microwave radiation for multi-element determination by inductively coupled plasma optical emission spectrometry (ICP OES). Samples were directly weighed in laboratory-made polytetrafluoroethylene vessels. Nitric acid and hydrogen peroxide were added to the uncovered vessels, which were positioned inside the baby-bottle sterilizer, containing 500 mL of water. The hydrogen peroxide volume was fixed at 100 mu L The system was placed in a domestic microwave oven and partial digestion was carried out for the determination of Ca, Cu, Fe. Mg, Mn and Zn by inductively coupled plasma optical emission spectrometry. The single-vessel approach was used in the entire procedure, to minimize contamination in trace analysis. Better recoveries and lower residual carbon content (RCC) levels were obtained under the conditions established through a 2(4-1) fractional factorial design: 650 W microwave power, 7 min digestion time, 50 mu L nitric acid and 50 mg sample mass. The digestion efficiency was ascertained according to the residual carbon content determined by inductively coupled plasma optical emission spectrometry. The accuracy of the proposed procedure was checked against two certified reference materials. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Aims. - The present study evaluated the effects of BCAA supplementation on exercise performance of pregnant rats. Methods. - In order to assess these effects, Wistar rats were divided into four groups: sedentary not-supplemented (SNS, n = 8); sedentary supplemented (SS, n = 8); trained not-supplemented (TNS, n = 8) and trained supplemented (TS, n = 8). All groups were submitted to the endurance test until exhaustion (ET) and post-effort lactate (PEL) determination before pregnancy (ET-B and PEL-B) and at the 19th day of pregnancy (ET-19 and PEL-19). Results. - The endurance training significantly increased the ET time to exhaustion (p<0.05). Regardless of BCAA supplementation, both endurance trained groups (TS and TNS) showed a longer time to exhaustion, assessed by ET, compared with the sedentary groups (SS and SNS) (p < 0.05). In the TNS, ET-19 time to exhaustion decreased when compared with the period before pregnancy. On the other hand, ET-19 time to exhaustion was not affected in the TS at the end of the pregnancy period. In addition, TS showed a marked PEL-19 reduction when compared with PEL-B. The data presented herein suggest that BCAA supplementation plays an ergogenic role in the maintenance of exercise performance during pregnancy in rats. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
The concentration of hydrogen peroxide is an important parameter in the azo dyes decoloration process through the utilization of advanced oxidizing processes, particularly by oxidizing via UV/H2O2. It is pointed out that, from a specific concentration, the hydrogen peroxide works as a hydroxyl radical self-consumer and thus a decrease of the system`s oxidizing power happens. The determination of the process critical point (maximum amount of hydrogen peroxide to be added) was performed through a ""thorough mapping"" or discretization of the target region, founded on the maximization of an objective function objective (constant of reaction kinetics of pseudo-first order). The discretization of the operational region occurred through a feedforward backpropagation neural model. The neural model obtained presented remarkable coefficient of correlation between real and predicted values for the absorbance variable, above 0.98. In the present work, the neural model had, as phenomenological basis the Acid Brown 75 dye decoloration process. The hydrogen peroxide addition critical point, represented by a value of mass relation (F) between the hydrogen peroxide mass and the dye mass, was established in the interval 50 < F < 60. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A simple calorimetric method to estimate both kinetics and heat transfer coefficients using temperature-versus-time data under non-adiabatic conditions is described for the reaction of hydrolysis of acetic anhydride. The methodology is applied to three simple laboratory-scale reactors in a very simple experimental setup that can be easily implemented. The quality of the experimental results was verified by comparing them with literature values and with predicted values obtained by energy balance. The comparison shows that the experimental kinetic parameters do not agree exactly with those reported in the literature, but provide a good agreement between predicted and experimental data of temperature and conversion. The differences observed between the activation energy obtained and the values reported in the literature can be ascribed to differences in anhydride-to-water ratios (anhydride concentrations). (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Using the fish silage to partially replace proteic feedstuff in aquafeeds is an alternative to mitigate sanitary and environmental problems caused by the lack of adequate destination for fisheries residues. It would also lower feed costs, consequently improving fish culture profitability. However, using fish silages in aquafeeds depends on determination of its apparent digestibility coefficients (ADC). This work aimed to determining the ADC of crude protein and amino acids of acid silage (AS), biological silage (BS) and enzymatic silage (ES) for juvenile Nile tilapia (94.5 +/- 12.7 g). The ADC(CP) was: 92.0%, 89.1% and 93.7% for AS, BS and SE respectively. The average ADC of amino acids was: 91.8%, 90.8% and 94.6% for AS, BS and ES respectively. Results encourage the use of AS, BS and ES to partially replace protein sources in balanced diets for neotropical fish.