58 resultados para Reperfusion therapy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intestinal ischemia-reperfusion (I/R) injury may cause acute systemic and lung inflammation. Here, we revisited the role of TNF-alpha in an intestinal I/R model in mice, showing that this cytokine is not required for the local and remote inflammatory response upon intestinal I/R injury using neutralizing TNF-alpha antibodies and TNF ligand-deficient mice. We demonstrate increased neutrophil recruitment in the lung as assessed by myeloperoxidase activity and augmented IL-6, granulocyte colony-stimulating factor, and KC levels, whereas TNF-alpha levels in serum were not increased and only minimally elevated in intestine and lung upon intestinal I/R injury. Importantly, TNF-alpha antibody neutralization neither diminished neutrophil recruitment nor any of the cytokines and chemokines evaluated. In addition, the inflammatory response was not abrogated in TNF and TNF receptors 1 and 2-deficient mice. However, in view of the damage on the intestinal barrier upon intestinal I/R with systemic bacterial translocation, we asked whether Toll-like receptor (TLR) activation is driving the inflammatory response. In fact, the inflammatory lung response is dramatically reduced in TLR2/4-deficient mice, confirming an important role of TLR receptor signaling causing the inflammatory lung response. In conclusion, endogenous TNF-alpha is not or minimally elevated and plays no role as a mediator for the inflammatory response upon ischemic tissue injury. By contrast, TLR2/4 signaling induces an orchestrated cytokine/chemokine response leading to local and remote pulmonary inflammation, and therefore disruption of TLR signaling may represent an alternative therapeutic target.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

STUDY DESIGN: Randomized crossover double-blinded placebo-controlled trial. OBJECTIVE: To investigate if low-level laser therapy (LLLT) can affect biceps muscle performance, fatigue development, and biochemical markers of postexercise recovery. BACKGROUND: Cell and animal studies have suggested that LLLT can reduce oxidative stress and inflammatory responses in muscle tissue. But it remains uncertain whether these findings can translate into humans in sport and exercise situations. METHODS: Nine healthy male volleyball players participated in the study. They received either active LLLT (cluster probe with 5 laser diodes; A = 810 nm; 200 mW power output; 30 seconds of irradiation, applied in 2 locations over the biceps of the nondominant arm; 60 J of total energy) or placebo LLLT using an identical cluster probe. The intervention or placebo were applied 3 minutes before the performance of exercise. All subjects performed voluntary elbow flexion repetitions with a workload of 75% of their maximal voluntary contraction force until exhaustion. RESULTS: Active LLLT increased the number of repetitions by 14.5% (mean +/- SD, 39.6 +/- 4.3 versus 34.6 +/- 5.6; P = .037) and the elapsed time before exhaustion by 8.0% (P = .034), when compared to the placebo treatment. The biochemical markers also indicated that recovery may be positively affected by LLLT, as indicated by postexercise blood lactate levels (P<.01), creatine kinase activity (P = .017), and C-reactive protein levels (P = .047), showing a faster recovery with LLLT application prior to the exercise. CONCLUSION: We conclude that pre-exercise irradiation of the biceps with an LLLT dose of 6 J per application location, applied in 2 locations, increased endurance for repeated elbow flexion against resistance and decreased postexercise levels of blood lactate, creatine kinase, and C-reactive protein. LEVEL OF EVIDENCE: Performance enhancement, level 1b. J Orthop Sports Phys Ther 2010;40(8):524-532. doi:10.2519/jospt.2010.3294

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We wanted to test if pre-exercise muscle irradiation with 904 nm laser affects the development of fatigue, blood lactate levels and creatine kinase (CK) activity in a rat model with tetanic contractions. Thirty male Wistar rats were divided into five groups receiving either one of four different laser doses (0.1, 0.3, 1.0 and 3.0 J) or a no-treatment control group. Laser irradiation was performed immediately before the first contraction for treated groups. Electrical stimulation was used to induce six tetanic tibial anterior muscle contractions with 10 min intervals between them. Contractions were stopped when the muscle force fell to 50% of the peak value for each contraction; blood samples were taken before the first and immediately after the sixth contraction. The relative peak forces for the sixth contraction were significantly better (P < 0.05) in the two laser groups irradiated with highest doses [151.27% (SD +/- A 18.82) for 1.0 J, 144.84% (SD +/- A 34.47) for 3.0 J and 82.25% (SD +/- A 11.69) for the control group]. Similar significant (P < 0.05) increases in mean performed work during the sixth contraction for the 1.0 and 3.0 J groups were also observed. Blood lactate levels were significantly lower (P < 0.05) than the control group in all irradiated groups. All irradiated groups except the 3.0 J group had significantly lower post-exercise CK activity than the control group. We conclude that pre-exercise irradiation with a laser dose of 1.0 J and 904 nm wavelength significantly delays muscle fatigue and decreases post-exercise blood lactate and CK in this rat model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We tested if modulation in mRNA expression of cyclooxygenase isoforms (COX-1 and COX-2) can be related to protective effects of phototherapy in skeletal muscle. Thirty male Wistar rats were divided into five groups receiving either one of four laser doses (0.1, 0.3, 1.0 and 3.0 J) or a no-treatment control group. Laser irradiation (904 nm, 15 mW average power) was performed immediately before the first contraction for treated groups. Electrical stimulation was used to induce six tetanic tibial anterior muscle contractions. Immediately after sixth contraction, blood samples were collected to evaluate creatine kinase activity and muscles were dissected and frozen in liquid nitrogen to evaluate mRNA expression of COX-1 and COX-2. The 1.0 and 3.0 J groups showed significant enhancement (P < 0.01) in total work performed in six tetanic contractions compared with control group. All laser groups, except the 3.0 J group, presented significantly lower post-exercise CK activity than control group. Additionally, 1.0 J group showed increased COX-1 and decreased COX-2 mRNA expression compared with control group and 0.1, 0.3 and 3.0 J laser groups (P < 0.01). We conclude that pre-exercise infrared laser irradiation with dose of 1.0 J enhances skeletal muscle performance and decreases post-exercise skeletal muscle damage and inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Innate immune responses against microorganisms may be mediated by Toll-like receptors (TLRs). Intestinal ischemia-reperfusion (i-I/R) leads to the translocation of bacteria and/or bacterial products such as endotoxin, which activate TLRs leading to acute intestinal and lung injury and inflammation observed upon gut trauma. Here, we investigated the role of TLR activation by using mice deficient for the common TLR adaptor protein myeloid differentiation factor 88 (MyD88) on local and remote inflammation following intestinal ischemia. Balb/c and MyD88(-/-) mice were subjected to occlusion of the superior mesenteric artery (45 min) followed by intestinal reperfusion (4 h). Acute neutrophil recruitment into the intestinal wall and the lung was significantly diminished in MyD88(-/-) after i-I/R, which was confirmed microscopically. Diminished neutrophil recruitment was accompanied with reduced concentration of TNF-alpha and IL-1 beta level. Furthermore, diminished microvascular leak and bacteremia were associated with enhanced survival of MyD88(-/-) mice. However, neither TNF-alpha nor IL-1 beta neutralization prevented neutrophil recruitment into the lung but attenuated intestinal inflammation upon i-I/R. In conclusion, our data demonstrate that disruption of the TLR/MyD88 pathway in mice attenuates acute intestinal and lung injury, inflammation, and endothelial damage allowing enhanced survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our aim was to investigate the immediate effects of bilateral, 830 nm, low-level laser therapy (LLLT) on high-intensity exercise and biochemical markers of skeletal muscle recovery, in a randomised, double-blind, placebo-controlled, crossover trial set in a sports physiotherapy clinic. Twenty male athletes (nine professional volleyball players and eleven adolescent soccer players) participated. Active LLLT (830 nm wavelength, 100 mW, spot size 0.0028 cm(2), 3-4 J per point) or an identical placebo LLLT was delivered to five points in the rectus femoris muscle (bilaterally). The main outcome measures were the work performed in the Wingate test: 30 s of maximum cycling with a load of 7.5% of body weight, and the measurement of blood lactate (BL) and creatine kinase (CK) levels before and after exercise. There was no significant difference in the work performed during the Wingate test (P > 0.05) between subjects given active LLLT and those given placebo LLLT. For volleyball athletes, the change in CK levels from before to after the exercise test was significantly lower (P = 0.0133) for those given active LLLT (2.52 U l(-1) +/- 7.04 U l(-1)) than for those given placebo LLLT (28.49 U l(-1) +/- 22.62 U l(-1)). For the soccer athletes, the change in blood lactate levels from before exercise to 15 min after exercise was significantly lower (P < 0.01) in the group subjected to active LLLT (8.55 mmol l(-1) +/- 2.14 mmol l(-1)) than in the group subjected to placebo LLLT (10.52 mmol l(-1) +/- 1.82 mmol l(-1)). LLLT irradiation before the Wingate test seemed to inhibit an expected post-exercise increase in CK level and to accelerate post-exercise lactate removal without affecting test performance. These findings suggest that LLLT may be of benefit in accelerating post-exercise recovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Objectives: There are some indications that low-level laser therapy (LLLT) may delay the development of skeletal muscle fatigue during high-intensity exercise. There have also been claims that LED cluster probes may be effective for this application however there are differences between LED and laser sources like spot size, spectral width, power output, etc. In this study we wanted to test if light emitting diode therapy (LEDT) can alter muscle performance, fatigue development and biochemical markers for skeletal muscle recovery in an experimental model of biceps humeri muscle contractions. Study Design/Materials and Methods: Ten male professional volleyball players (23.6 [SD +/- 5.6] years old) entered a randomized double-blinded placebo-controlled crossover trial. Active cluster LEDT (69 LEDs with wavelengths 660/850 nm, 10/30 mW, 30 seconds total irradiation time, 41.7J of total energy irradiated) or an identical placebo LEDT was delivered under double-blinded conditions to the middle of biceps humeri muscle immediately before exercise. All subjects performed voluntary biceps humeri contractions with a workload of 75% of their maximal voluntary contraction force (MVC) until exhaustion. Results: Active LEDT increased the number of biceps humeri contractions by 12.9% (38.60 [SD +/- 9.03] vs. 34.20 [SD +/- 8.68], P = 0.021) and extended the elapsed time to perform contractions by 11.6% (P = 0.036) versus placebo. In addition, post-exercise levels of biochemical markers decreased significantly with active LEDT: Blood Lactate (P = 0.042), Creatine Kinase (P = 0.035), and C-Reative Protein levels (P = 0.030), when compared to placebo LEDT. Conclusion: We conclude that this particular procedure and dose of LEDT immediately before exhaustive biceps humeri contractions, causes a slight delay in the development of skeletal muscle fatigue, decreases post-exercise blood lactate levels and inhibits the release of Creatine Kinase and C-Reative Protein. Lasers Surg. Med. 41:572-577, 2009. (C) 2009 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Objective: Cyclosporine A treatment is important in the therapy of a number of medical conditions; however, alveolar bone loss is an important negative side-effect of this drug. As such, we evaluated whether concomitant administration of simvastatin would minimize cyclosporine A-associated alveolar bone loss in rats subjected, or not, to experimental periodontal disease. Material and Methods: Groups of 10 rats each were treated with cyclosporine A (10 mg/kg/day), simvastatin (20 mg/kg/day), cyclosporine A and simvastatin concurrently (cyclosporine A/simvastatin) or vehicle for 30 days. Four other groups of 10 rats each received a cotton ligature around the lower first molar and were treated similarly with cyclosporine A, simvastatin, cyclosporine A/simvastatin or vehicle. Calcium (Ca(2+)), phosphorus and alkaline phosphatase levels were evaluated in serum. Expression levels of interleukin-1 beta, prostaglandin E(2) and inducible nitric oxide synthase were evaluated in the gingivomucosal tissues. Bone volume and numbers of osteoblasts and osteoclasts were also analyzed. Results: Treatment with cyclosporine A in rats, with or without ligature, was associated with bone loss, represented by a lower bone volume and an increase in the number of osteoclasts. Treatment with cyclosporine A was associated with bone resorption, whereas simvastatin treatment improved cyclosporine A-associated alveolar bone loss in all parameters studied. In addition, simvastatin, in the presence of inflammation, can act as an anti-inflammatory agent. Conclusion: This study shows that simvastatin therapy leads to a reversal of the cyclosporine A-induced bone loss, which may be mediated by downregulation of interleukin-1 beta and prostaglandin E(2) production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to investigate the effect of 830 nm low-level laser therapy (LLLT) on skeletal muscle fatigue. Ten healthy male professional volleyball players entered a crossover randomized double-blinded placebo-controlled trial. Active LLLT (830 nm wavelength, 100 mW output, spot size 0.0028 cm(2), 200 s total irradiation time) or an identical placebo LLLT was delivered to four points on the biceps humeri muscle immediately before exercises. All subjects performed voluntary biceps humeri contractions with a load of 75% of the maximum voluntary contraction (MVC) force until exhaustion. After active LLLT the mean number of repetitions was significantly higher than after placebo irradiation [mean difference 4.5, standard deviation (SD) +/- 6.0, P = 0.042], the blood lactate levels increased after exercises, but there was no significant difference between the treatments. We concluded that 830 nm LLLT can delay the onset of skeletal muscle fatigue in high-intensity exercises, in spite of increased blood lactate levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last years, phototherapy has becoming a promising tool to improve skeletal muscle recovery after exercise, however, it was not compared with other modalities commonly used with this aim. In the present study we compared the short-term effects of cold water immersion therapy (CWIT) and light emitting diode therapy (LEDT) with placebo LEDT on biochemical markers related to skeletal muscle recovery after high-intensity exercise. A randomized double-blind placebo-controlled crossover trial was performed with six male young futsal athletes. They were treated with CWIT (5A degrees C of temperature [SD +/- 1A degrees]), active LEDT (69 LEDs with wavelengths 660/850 nm, 10/30 mW of output power, 30 s of irradiation time per point, and 41.7 J of total energy irradiated per point, total of ten points irradiated) or an identical placebo LEDT 5 min after each of three Wingate cycle tests. Pre-exercise, post-exercise, and post-treatment measurements were taken of blood lactate levels, creatine kinase (CK) activity, and C-reactive protein (CRP) levels. There were no significant differences in the work performed during the three Wingate tests (p > 0.05). All biochemical parameters increased from baseline values (p < 0.05) after the three exercise tests, but only active LEDT decreased blood lactate levels (p = 0.0065) and CK activity (p = 0.0044) significantly after treatment. There were no significant differences in CRP values after treatments. We concluded that treating the leg muscles with LEDT 5 min after the Wingate cycle test seemed to inhibit the expected post-exercise increase in blood lactate levels and CK activity. This suggests that LEDT has better potential than 5 min of CWIT for improving short-term post-exercise recovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Eccentric exercises (EEs) are recommended for the treatment of Achilles tendinopathy, but the clinical effect from EE has a slow onset. Hypothesis: The addition of low-level laser therapy (LLLT) to EE may cause more rapid clinical improvement. Study Design: Randomized controlled trial; Level of evidence, 1. Methods: A total of 52 recreational athletes with chronic Achilles tendinopathy symptoms were randomized to groups receiving either EE + LLLT or EE + placebo LLLT over 8 weeks in a blinded manner. Low-level laser therapy (lambda = 820 nm) was administered in 12 sessions by irradiating 6 points along the Achilles tendon with a power density of 60 mW/cm(2) and a total dose of 5.4 J per session. Results: The results of the intention-to-treat analysis for the primary outcome, pain intensity during physical activity on the 100-mm visual analog scale, were significantly lower in the LLLT group than in the placebo LLLT group, with 53.6 mm versus 71.5 mm (P = .0003) at 4 weeks, 37.3 mm versus 62.8 mm (P = .0002) at 8 weeks, and 33.0 mm versus 53.0 mm (P =.007) at 12 weeks after randomization. Secondary outcomes of morning stiffness, active dorsiflexion, palpation tenderness, and crepitation showed the same pattern in favor of the LLLT group. Conclusion: Low-level laser therapy, with the parameters used in this study, accelerates clinical recovery from chronic Achilles tendinopathy when added to an EE regimen. For the LLLT group, the results at 4 weeks were similar to the placebo LLLT group results after 12 weeks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the study was to verify whether post-menopausal hormone replacement therapy (HRT) modifies autoantibody titers against oxidized low-density lipoprotein (LDL) (anti-LDLoxi), against epitopes of oxidized apolipoprotein B100 and common carotid intima-media thickness (IMT) in these women. Sixty-eight women in pre-menopause (PMW) and 216 in post-menopause (POMW) were recruited; eighty-three had undergone HRT for at least 12 months, where 48 received conjugated estrogens alone (EHRT) and 35 received conjugated estrogen and medroxyprogesterone acetate (CHRT). ELISA was used to determine autoantibodies. Lipoprotein lipase (LPL), hepatic lipase (HL), cholesterol ester transfer protein (CETP) and phospholipid transfer protein (PLTP) activities were assayed by radiometric methods. IMT was measured using Doppler ultrasound. Anti-oxidized LDL and anti-D antibodies increased by 40% (p <= 0.003) and 42% (p <= 0.006), respectively, with menopause. There was a surprising and significant 7% reduction in anti-D2 antibody titers with HRT (p <= 0.050), indicating a positive effect of treatment on the immune response to oxidized LDL. Combined HRT decreased activities of HL and LPL. HRT did not change common carotid IMT, which was increased by 32% as expected after menopause (p <= 0.030). This study describes, for the first time, the protective effect of HRT on decreasing autoantibody titers against oxidized apolipoprotein B in LDL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ischemia and reperfusion injury (IRI) are mainly caused by leukocyte activation, endothelial dysfunction and production of reactive oxygen species. Moreover, IRI can lead to a systemic response affecting distant organs, such as the lungs. The objective was to study the pulmonary inflammatory systemic response after renal IRI. Male C57Bl/6 mice were subjected to 45 min of bilateral renal ischemia, followed by 4, 6, 12, 24 and 48 h of reperfusion. Blood was collected to measure serum creatinine and cytokine concentrations. Bronchoalveolar lavage fluid (BALF) was collected to determine the number of cells and PGE(2) concentration. Expressions of iNOS and COX-2 in lung were determined by Western blot. Gene analyses were quantified by real time PCR. Serum creatinine increased in the IRI group compared to sham mainly at 24 h after IRI (2.57 +/- A 0.16 vs. 0.43 +/- A 0.07, p < 0.01). The total number of cells in BAL fluid was higher in the IRI group in comparison with sham, 12 h (100 x 10(4) +/- A 15.63 vs. 18.1x10(4) +/- A 10.5, p < 0.05) 24 h (124 x 10(4) +/- A 8.94 vs. 23.2x10(4) +/- A 3.5, p < 0.05) and 48 h (79 x 10(4) +/- A 15.72 vs. 22.2 x 10(4) +/- A 4.2, p < 0.05), mainly by mononuclear cells and neutrophils. Pulmonary COX-2 and iNOS were up-regulated in the IRI group. TNF-alpha, IL-1 beta, MCP-1, KC and IL-6 mRNA expression were up-regulated in kidney and lungs 24 h after renal IRI. ICAM-1 mRNA was up-regulated in lungs 24 h after renal IRI. Serum TNF-alpha, IL-1 beta and MCP-1 and BALF PGE(2) concentrations were increased 24 h after renal IRI. Renal IRI induces an increase of cellular infiltration, up-regulation of COX-2, iNOS and ICAM-1, enhanced chemokine expression and a Th1 cytokine profile in lung demonstrating that the inflammatory response is indeed systemic, possibly leading to an amplification of renal injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the early phases that lead to fibrosis progression is inflammation. Once this stage is resolved, fibrosis might be prevented. Bone marrow mononuclear cells (BMMCs) are emerging as a new therapy for several pathologies, including autoimmune diseases, because they enact immunosuppression. In this study we aimed to evaluate the role of BMMC administration in a model of kidney fibrosis induced by an acute injury. C57Bl6 mice were subjected to unilateral severe ischemia by clamping the left renal pedicle for 1 h. BMMCs were isolated from femurs and tibia, and after 6 h of reperfusion, 1 x 10(6) cells were administrated intraperitoneally. At 24 h after surgery, treated animals showed a significant decrease in creatinine and urea levels when compared with untreated animals. Different administration routes were tested. Moreover, interferon (IFN) receptor knockout BMMCs were used, as this receptor is necessary for BMMC activation. Labeled BMMCs were found in ischemic kidney on FACS analysis. This improved outcome was associated with modulation of inflammation in the kidney and systemic modulation, as determined by cytokine expression profiling. Despite non-amelioration of functional parameters, kidney mRNA expression of interleukin (IL)-6 at 6 weeks was lower in BMMC-treated animals, as were levels of collagen 1, connective tissue growth factor (CTGF), transforming growth factor-beta (TGF-beta) and vimentin. Protective molecules, such as IL-10, heme oxygenase 1 (HO-1) and bone morphogenetic 7 (BMP-7), were increased in treated animals after 6 weeks. Moreover, Masson and Picrosirius red staining analyses showed less fibrotic areas in the kidneys of treated animals. Thus, early modulation of inflammation by BMMCs after an ischemic injury leads to reduced fibrosis through modulation of early inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) have regenerative properties in acute kidney injury, but their role in chronic kidney diseases is still unknown. More specifically, it is not known whether MSCs halt fibrosis. The purpose of this work was to investigate the role of MSCs in fibrogenesis using a model of chronic renal failure. MSCs were obtained from the tibias and femurs of male Wistar-EPM rats. Female Wistar rats were subjected to the remnant model, and 2 vertical bar x vertical bar 10(5) MSCs were intravenously administrated to each rat every other week for 8 weeks or only once and followed for 12 weeks. SRY gene expression was observed in female rats treated with male MSCs, and immune localization of CD73(+)CD90(+) cells at 8 weeks was also assessed. Serum and urine analyses showed an amelioration of functional parameters in MSC-treated animals at 8 weeks, but not at 12 weeks. Masson`s trichrome and Sirius red staining demonstrated reduced levels of fibrosis in MSC-treated animals. These results were corroborated by reduced vimentin, type I collagen, transforming growth factor beta, fibroblast specific protein 1 (FSP-1), monocyte chemoattractant protein 1, and Smad3 mRNA expression and alpha smooth muscle actin and FSP-1 protein expression. Renal interleukin (IL)-6 and tumor necrosis factor alpha mRNA expression levels were significantly decreased after MSC treatment, whereas IL-4 and IL-10 expression levels were increased. All serum cytokine expression levels were decreased in MSC-treated animals. Taken together, these results suggested that MSC therapy can indeed modulate the inflammatory response that follows the initial phase of a chronic renal injury. The immunosuppressive and remodeling properties of MSCs may be involved in the decreased fibrosis in the kidney. STEM CELLS 2009;27:3063-3073