54 resultados para REVERSE-OSMOSIS MEMBRANES
Resumo:
This paper describes the manufacture of tubular UF and MF porous and supported ceramic membranes to oil/water emulsions demulsification. For such a purpose, a rigorous control was realized over the distribution and size of pores. Suspensions at 30 vol.% of solids (zirconia or alumina powder and sucrose) and 70 vol.% of liquids (isopropyl alcohol and PVB) were prepared in a jar mill varying the milling time of the sucrose particles, according to the pores size expected. The membranes were prepared by isostatic pressing method and structurally characterized by SEM, porosimetry by mercury intrusion and measurements of weight by immersion. The morphological characterization of the membranes identified the formation of porous zirconia and alumina membranes and supported membranes. The results of porosimetry analysis by mercury intrusion presented an average pore size of 1.8 mu m for the microfiltration porous membranes and for the ultrafiltration supported membranes, pores with average size of 0.01-0.03 mu m in the top-layer and 1.8 mu m in the support. By means of the manufacture method applied, it was possible to produce ultra and microfiltration membranes with high potential to be applied to the separation of oil/water emulsions. (C) 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Nanocomposite membranes containing polysulfone (PSI) and sodium montmorillonite from Wyoming (MMT) were prepared by a combination of solution dispersion and the immersion step of the wet-phase inversion method. The purpose was to study the MMT addition with contents of 0.5 and 3.0 mass% MMT in the preparation of nanocomposite membranes by means of morphology, thermal, mechanical and hydrophilic properties of nanocomposite membranes and to compare these properties to the pure PSf membrane ones. Small-angle X-ray diffraction patterns revealed the formation of intercalated clay mineral layers in the PSf matrix and TEM images also presented an exfoliated structure. A good dispersion of the clay mineral particles was detected by SEM images. Tensile tests showed that both elongation at break and tensile strength of the nanocomposites were improved in comparison to the pristine PSf. The thermal stability of the nanocomposite membranes, evaluated by onset and final temperatures of degradation, was also enhanced. The hydrophilicity of the nanocomposite membranes, determined by water contact angle measurements, was higher; therefore, the MMT addition was useful to produce more hydrophilic membranes. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper presents the results of a research on direct drinking water treatment through an ultrafiltration pilot plant unit using spiral-wound membranes (3500 MWCO). The source of water is the Guarapiranga Reservoir, an eutrophicated water body located in the metropolitan region of Sao Paulo, Brazil. The data were collected during a period of almost 3400 h, from August 2005 to January 2006. The main objective of the study was to evaluate the membrane production capacity and contaminant removal efficiency. It was verified that the system was able to produce a high quality permeate with a flow close to the specified by the membrane manufacturer. The average permeate flow was 19.7 L.h(-1).m(-2), at 467 kPa and 25 degrees C, with a global water recovery of almost 85%. The removal efficiencies for TOC, UV light absorption, and turbidity were 85%, 56%, and 95%, respectively. The results provide substantial evidence of the technical feasibility of spiral-wound UF membranes for direct drinking water treatment from euthrophicated sources, as an alternative for conventional drinking water treatment systems.
Resumo:
The possibility of producing valued devices from low cost natural resources is a subject of broad interest. The present study explores the preparation and characterization of silk fibroin dense membranes using waste silk fibers from textile processing. Morphology, crystallinity, thermal resistance and cytotoxicity of membranes as well as the changes on the secondary structure of silk fibroin were analyzed after undergoing treatment with ethanol. Membranes presented amorphous patterns as determined via X-ray diffraction. The secondary structure of silk fibroin on dense membranes was either random coil (silk I) or p-sheet (silk II), before and after ethanol treatment, respectively. The sterilized membranes presented no cytotoxicity to endothelial cells during in vitro assays. This fact stresses the material potential to be used in the fabrication of biomaterials, as coatings of cardiovascular devices and as membranes for wound dressing or drug delivery systems. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A new method to prepare porous silk fibroin (SF) membranes without dialysis proposed. Silk fibers were degummed to remove sericin and the resultant fibroin was dissolved in a CaCl(2)-CH(3)CH(2)OH-H(2)O ternary solvent. Rather than undergoing dialysis, a fibroin salty solution was diluted in water and then submitted to a mechanical agitation that led to a phase separation through foam formation on the solution surface. This foam was continually collected and then compacted between plates to remove the excess of water. The membranes presented large pores with diameters of greater than 100 pm (as shown by scanning electron microscopy - SEM), porosity of 68% and water content of 91% w/w. X-ray diffraction (XRD) and infrared spectroscopy (FTIR-ATR) indicated that the membranes present SF in a beta-sheet structure even before the ethanol treatment. A typical elastic deformation profile and degradation under temperature were observed using calorimetric analysis (DSC), thermal gravimetric analysis (TGA) and mechanical tests. As indicated by the in vitro cytotoxicity tests, these membranes present potential for use as scaffolds. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 114: 617-623, 2009
Resumo:
A partial pseudo-ternary phase diagram has been studied for the cethyltrimethylammonium bromide/isooctane:hexanol:butanol/potassium phosphate buffer system, where the two-phase diagram consisting of the reverse micelle phase (L-2) in equilibrium with the solvent is indicated. Based on these diagrams two-phase systems of reverse micelles were prepared with different compositions of the compounds and used for extraction and recovery of two enzymes, and the percentage of enzyme recovery yield monitored. The enzymes glucose-6-phosphate dehydrogenase (G6PD) and xylose redutase (XR) obtained from Candida guilliermondii yeast were used in the extraction procedures. The recovery yield data indicate that micelles having different composition give selective extraction of enzymes. The method can thus be used to optimize enzyme extraction processes. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Introduction - Baccharis dracunculifolia, which has great potential for the development of new phytotherapeutic medicines, is the most important botanical source of the southeastern Brazilian propolis, known as green propolis on account of its color. Objective - To develop a reliable reverse-phase HPLC chromatographic method for the analysis of phenolic compounds in both B. dracunculifolia raw material and its hydroalcoholic extracts. Methodology - The method utilised a C(18) CLC-ODS (M) (4.6 x 250 mm) column with nonlinear gradient elution and UV detection at 280 nm. A procedure for the extraction of phenolic compounds using aqueous ethanol 90%, with the addition of veratraldehyde as the internal standard, was developed allowing the quantification of 10 compounds: caffeic acid, coumaric acid, ferulic acid, cinnamic acid, aromadendrin-4`-methyl ether, isosakuranetin, drupanin, artepillin C, baccharin and 2,2-dimethyl-6-carboxyethenyl-2H-1-benzopyran acid. Results - The developed method gave a good detection response with linearity in the range 20.83-800 mu g/mL and recovery in the range 81.25-93.20%, allowing the quantification of the analysed standards. Conclusion - The method presented good results for the following parameters: selectivity, linearity, accuracy, precision, robustness, as well as limit of detection and limit of quantitation. Therefore, this method could be considered as an analytical tool for the quality control of B. dracunculifolia raw material and its products in both cosmetic and pharmaceutical companies. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
The objective of this article was to analyze the processes of transfer and reverse trans fer of knowledge following. international acquisitions made by Brazilian multinational companies. Reverse transfer is understood,as the process of transferring knowledge from the acquired company to the acquirer. Therefore, a case study was conducted on the acquisition of the Perez Companc group by Petrobras in Argentina. The study is qualitative. Primary data were obtained and eight members of the international managing board of Petrobras were interviewed. After the first moment of integration, reported as conflictive, there was a better integration of the companies, mainly in the technical areas of, the oil and gas exploration activities. The size of Perez Companc, its aim (a company of energy, not only oil and gas company) and the length of time were critical factors for the transfer of best practices between the companies. The expatriation of the employees is seen as a key-tool, as well as the technical visits, for the transfer of knowledge.. An. additional contribution of the study was to present the results of the research on the process of transfer and reverse transfer of knowledge in Brazilian multinational companies, since most studies on the theme focus on the motivators and challenges concerning these processes.
Resumo:
Although lacking catalytic activity, the Lys49-PLA(2)s damage artificial membranes by a Ca2+-independent mechanism, and demonstrate a potent bactericidal effect. The relationship between the membrane-damaging activity and bactericidal effect of bothropstoxin-I (BthTx-1), a Lys49-PLA(2) from the venom of Bothrops jararacussu, was evaluated for the wildtype protein and a series of site-directed mutants in the active site and C-terminal regions of the protein. The membrane permeabilization effect against the inner and outer membranes of Escherichia coli K12 was evaluated by fluorescence changes of Sytox Green and N-phenyl-N-naphthylamine, respectively. With the exception of H48Q, all mutants reduced the bactericidal activity, which correlated with a reduction of the permeabilization effect both against the inner bacterial membrane. No significant differences in the permeabilization of the bacterial outer membrane were observed between the native, wild-type recombinant and mutant proteins. These results suggest different permeabilization mechanisms against the inner and outer bacterial membranes. Furthermore, the structural determinants of bacterial inner membrane damage identified in this study correlate with those previously observed for artificial membrane permeabilization, suggesting that a common mechanism of membrane damage underlies the two effects. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A surfactant-mediated solution route for the obtainment of nanosized rare-earth orthophosphates of different compositions (LaPO(4):Eu(3+), (Y,Gd)PO(4):Eu(3+),LaPO(4):Tm(3+), YPO(4):Tm(3+), and YbPO(4):Er(3+)) is presented, and the implications of the morphology control on the solids properties are discussed. The solids are prepared in water-in-heptane microemulsions, using cetyltrimethylammonium bromide and 1-butanol as the surfactant and cosurfactant; the alteration of the starting microemulsion composition allows the obtainment of similar to 30 nm thick nanorods with variable length. The morphology and the structure of the solids were evaluated through scanning electron microscopy and through powder X-ray diffractometry; dynamic light scattering and thermal analyses were also performed. The obtained materials were also characterized through vibrational (FTIR) and luminescence spectroscopy (emission/excitation, luminescence lifetimes, chromaticity, and quantum efficiency), where the red, blue, and upconversion emissions of the prepared phosphors were evaluated.
Resumo:
This article addresses the interactions of the synthetic antimicrobial peptide dermaseptin 01 (GLWSTIKQKGKEAAIAAA-KAAGQAALGAL-NH(2), DS 01) with phospholipid (PL) monolayers comprising (i) a lipid-rich extract of Leishmania amazonensis (LRE-La), (ii) zwitterionic PL (dipalmitoylphosphatidylcholine, DPPC), and (iii) negatively charged PL (dipalmitoylphosphatidylglycerol, DPPG). The degree of interaction of DS 01 with the different biomembrane models was quantified from equilibrium and dynamic liquid-air interface parameters. At low peptide concentrations, interactions between DS 01 and zwitterionic PL, as well as with the LRE-La monolayers were very weak, whereas with negatively charged PLs the interactions were stronger. For peptide concentrations above 1 mu g/ml, a considerable expansion of negatively charged monolayers occurred. In the case of DPPC, it was possible to return to the original lipid area in the condensed phase, suggesting that the peptide was expelled from the monolayer. However, in the case of DPPG, the average area per lipid molecule in the presence of DS 01 was higher than pure PLs even at high surface pressures, suggesting that at least part of DS 01 remained incorporated in the monolayer. For the LRE-La monolayers, DS 01 also remained in the monolayer. This is the first report on the antiparasitic activity of AMPs using Langmuir monolayers of a natural lipid extract from L. amazonensis. Copyright (C) 2011 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
The commercially available Jacobsen catalyst, Mn(salen), was occluded in hybrid polymeric membranes based on poly(dimethylsiloxane) (PDMS) and poly(vinyl alcohol) (PVA). The obtained systems were characterized by UV-vis spectroscopy and SEM techniques. The membranes were used as a catalytic barrier between two different phases: an organic substrate phase (cyclooctene or styrene) in the absence of solvent, and an aqueous solution of either t-BuOOH or H(2)O(2). Membranes containing different percentages of PVA were prepared, in order to modulate their hydrophilic/hydrophobic swelling properties. The occluded complex proved to be an efficient catalyst for the oxidation of alkenes. The new triphasic system containing a cheap and easily available catalyst allowed substrate oxidation and easy product separation using ""green"" oxidants. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
10-(Octyloxy) decyl-2-(trimethylammonium) ethyl phosphate (ODPC) is an alkylphospholipid that can interact with cell membranes because of its amphiphilic character. We describe here the interaction of ODPC with liposomes and its toxicity to leukemic cells with an ED-50 of 5.4, 5.6 and 2.9 pM for 72 h of treatment for inhibition of proliferation of NB4, U937 and K562 cell lines, respectively, and lack of toxicity to normal hematopoietic progenitor cells at concentrations up to 25 pM. The ED-50 for the non-malignant HEK-293 and primary human umbilical vein endothelial cells (HUVEC) was 63.4 and 60.7 mu M, respectively. The critical micellar concentration (CMC) of ODPC was 200 mu M. Dynamic light scattering indicated that dipalmitoylphosphatidylcholine (DPPC) liposome size was affected only above the CMC of ODPC. Differential calorimetric scanning (DCS) of liposomes indicated a critical transition temperature (T(c)) of 41.5 degrees C and an enthalpy (Delta H) variation of 7.3 kcal mol(-1). The presence of 25 mu M ODPC decreased T(c) and Delta H to 393 degrees C and 4.7 kcal mol(-1), respectively. ODPC at 250 mu M destabilized the liposomes (36.3 degrees C. 0.46 kcal mol(-1)). Kinetics of 5(6)-carboxyfluorescein (CF) leakage from different liposome systems indicated that the rate and extent of CF release depended on liposome composition and ODPC concentration and that above the CMC it was instantaneous. Overall, the data indicate that ODPC acts on in vitro membrane systems and leukemia cell lines at concentrations below its CMC, suggesting that it does not act as a detergent and that this effect is dependent on membrane composition. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We have described here a new kind of membrane material which acts as an ionic conductor on the surface of modified electrodes. Using these membranes it is possible to assemble highly efficient modified electrodes for electrochemical investigation of insoluble substrates. These materials can easily replace carbon paste electrodes and Nafion (R) for this purpose with a series of advantages. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Bothropstoxin-I (BthTx-I) is a Lys49-PLA(2) from the venom of the snake Bothrops jararacussu, which permeabilizes biological and artificial membranes by a mechanism independent of lipid hydrolysis. This mechanism has been investigated by studying the interaction of nine single tryptophan BthTx-I mutants with negatively charged phospholipid membranes. Changes in the solvent exposure of the tryptophan in each mutant were evaluated comparing the rate of chemical modification (k(mod)) by bromosuccinamide with the maximum intrinsic tryptophan fluorescence emission wavelength (lambda(max)) in buffer and in the presence of 10% DMPA/90% DPPC liposomes. No changes in lambda(max). were observed, whereas k(mod) values for tryptophans at positions 7, 10, 31 and 125 were significantly reduced in the presence of lipids, suggesting that bound phospholipid decreases solvent accessibility at these positions. Since the half-lives of the fluorescence and chemical modification effects differ by at least six orders of magnitude, these results suggest that the bound phospholipid may interact with multiple locations on the protein surface over micro- to millisecond timescales. (C) 2009 Elsevier Ltd. All rights reserved.