81 resultados para Quantitative reconstruction
Resumo:
Measurement of the transmitted intensity from a coherent monomode light source through a series of subwavelength slit arrays in Ag films, with varying array pitch and number of slits, demonstrates enhancement (suppression) by factors of as much as 6 (9) when normalized to the transmission efficiency of an isolated slit. Pronounced minima in the transmitted intensity are observed at array pitches corresponding to lambda(SPP), 2 lambda(SPP), and 3 lambda(SPP), where lambda(SPP) is the wavelength of the surface plasmon polariton (SPP). The position of these minima arises from destructive interference between incident propagating waves and pi-phase-shifted SPP waves. Increasing the number of slits to four or more does not increase appreciably the per-slit transmission intensity. A simple interference model fits well the measured transmitted intensity profile.
Resumo:
Cuboctahedron (CUB) and icosahedron (ICO) model structures are widely used in the study of transition-metal (TM) nanoparticles (NPs), however, it might not provide a reliable description for small TM NPs such as the Pt(55) and Au(55) systems in gas phase. In this work, we combined density-functional theory calculations with atomic configurations generated by the basin hopping Monte Carlo algorithm within the empirical Sutton-Chen embedded atom potential. We identified alternative lower energy configurations compared with the ICO and CUB model structures, e. g., our lowest energy structures are 5.22 eV (Pt(55)) and 2.01 eV (Au(55)) lower than ICO. The energy gain is obtained by the Pt and Au diffusion from the ICO core region to the NP surface, which is driven by surface compression (only 12 atoms) on the ICO core region. Therefore, in the lowest energy configurations, the core size reduces from 13 atoms (ICO, CUB) to about 9 atoms while the NP surface increases from 42 atoms (ICO, CUB) to about 46 atoms. The present mechanism can provide an improved atom-level understanding of small TM NPs reconstructions.
Resumo:
More than 2 years after undergoing anterior cruciate ligament (ACL) reconstruction, women still present bilateral asymmetries during multijoint movement tasks. Given the well-known ACL-injury gender bias, the goal of this study was to investigate whether males also present such asymmetries more than 2 years after undergoing ACL reconstruction. This study involved 12 participants submitted to ACL reconstruction in the ACL group and 17 healthy participants in the control group. The mean postoperative period was 37 months. The participants executed bilateral countermovement jumps and load squat tasks. The kinematics and ground reaction forces on each lower limb and pelvis were recorded, and used to compute bilateral peak vertical ground reaction forces, peak knee and hip joint powers in the sagittal plane, and the ratio between these powers. For the jump task, the groups had the same performance in the jump height, but for the ACL group the peak knee joint power on the operated side was 13% lower than on the non-operated side (p = 0.02). For the squat task, the hip-knee joint power ratio on the operated side of the ACL group was 31% greater than on the non-operated side (p = 0.02). The ACL group presented a deficit in the operated knee that had its energy generation over time (joint power) partially substituted by the hip joint power of the same side. The fact that, even after more than 2 years following the ACL reconstruction and returning to regular activity, the ACL group still had neuromuscular asymmetries suggests a need for improvement in the ACL reconstruction surgery procedures and/or rehabilitation protocols.
Resumo:
Objective: Postural assessment through photography is a simple method that allows the acquisition of quantitative values to define the alignment of body segments. The purpose of this study was to quantitatively assess the postural alignment of several body segments in standing through anterior, posterior, and lateral views. Methods: In this cross-sectional study, 122 subjects were initially evaluated. Seven subjects were excluded from the study after cluster analysis. The final sample had 115 subjects, 75% women with a mean age of 26 + 7 years. Photographs were taken from anterior, posterior, and lateral views after placement of markers on specific anatomical points. Photographs were analyzed using free Postural Analysis Software/Software of Postural Analysis (PAS/SAPO). Quantitative values for postural analysis variables were ascertained for head, upper and lower limbs, and trunk, along with the frequency of inclinations to the left and to the right. Results: Regarding the head, 88% of the sample presented some inclination, 67% of which was to the right. There was a predominance of right inclination of the shoulder and pelvis in 68% and 43% of study subjects, respectively. Lower limbs presented mean alignment of 178 in the anterior view, and the trunk showed predominant right inclination in 66% of participants. Conclusion: Small asymmetries were observed in anterior and posterior views. This study suggests that there is no symmetry in postural alignment and that small asymmetries represent the normative standard for posture in standing. (J Manipulative Physiol Ther 2011;34:371-380)
Resumo:
Bittar CK, Cliquet A Jr, dos Santos Floter M: Utility of quantitative ultrasound of the calcaneus in diagnosing osteoporosis in spinal cord injury patients. Am J Phys Med Rehabil 2011;90:477-481. Objective: The aim of this study was to assess the utility of quantitative ultrasound of the calcaneus in diagnosing osteoporosis in spinal cord injury patients in a Brazilian Teaching Hospital. Design: This is a diagnostic test criterion standard comparison study. Between January 2008 and October 2009, the bone density of 15 spinal cord injury patients was assessed for analysis before beginning rehabilitation using muscle stimulation. The bone density was assessed using bone densitometry examination (DEXA) and ultrasound examination of the calcaneus (QUS). The measurements acquired using QUS and DEXA were compared between patients with spinal cord injury and a control group of ten healthy individuals. Results: The T-score values for femoral neck using DEXA (P < 0.0022) and those using QUS of the calcaneus (P < 0.0005) differed significantly between the groups, and the means in the normal subjects were higher than those in spinal cord injury patients who would receive electrical stimulation. In spinal cord injury patients, the significant differences were found between the QUS T-score for calcaneus and the DEXA scores for the lumbar spine and femoral neck. Conclusions: Because of the low level of mechanical stress on the calcaneus, the results of the QUS could not be correlated with the DEXA results for diagnosing osteoporosis. Therefore, QUS seems to be not a good choice for diagnosis and follow-up.
Resumo:
The volumetric reconstruction technique presented in this paper employs a two-camera stereoscopic particle image velocimetry (SPIV) system in order to reconstruct the mean flow behind a fixed cylinder fitted with helical strakes, which are commonly used to suppress vortex-induced vibrations (VIV). The technique is based on the measurement of velocity fields at equivalent adjacent planes that results in pseudo volumetric fields. The main advantage over proper volumetric techniques is the avoidance of additional equipment and complexity. The averaged velocity fields behind the straked cylinders and the geometrical periodicity of the three-start configuration are used to further simplify the reconstruction process. Two straked cylindrical models with the same pitch (p = 10d) and two different heights (h = 0.1 and 0.2d) are tested. The reconstructed flow shows that the strakes introduce in the wake flow a well-defined wavelength of one-third of the pitch. Measurements of hydrodynamic forces, fluctuating velocity, vortex formation length, and vortex shedding frequency show the interdependence of the wake parameters. The vortex formation length is increased by the strakes, which is an important effect for the suppression of vortex-induced vibrations. The results presented complement previous investigations concerning the effectiveness of strakes as VIV suppressors and provide a basis of comparison to numerical simulations.
Resumo:
Aluminum white dross is a valuable material principally due to its high metallic aluminum content. The aim of this work is to develop a method for quantitative analysis of aluminum white dross with high accuracy. Initially, the material was separated into four granulometric fractions by means of screening. Two samples of each fraction were obtained, which were analyzed by means of X-ray fluorescence and energy dispersive spectroscopy in order to determine the elements present in the samples. The crystalline phases aluminum, corundum, spinel, defect spinel, diaoyudaoite, aluminum nitride, silicon and quartz low were identified by X-ray diffraction. The quantitative phase analysis was performed by fitting the X-ray diffraction profile with the Rietveld method using the GSAS software. The following quantitative results were found: 77.8% aluminum, 7.3% corundum, 2.6% spinel, 7.6% defect spinel, 1.8% diaoyudaoite, 2.9% aluminum nitride, and values not significant of quartz and silicon.
Resumo:
A brief look at the history of fractography has shown a recent trend in the quantification of topographic parameters through the use of three-dimensional reconstruction techniques, which associate SEM stereoscopy and stereophotogrammetry software, allowing the calculation of the elevation measurement at numerous points of the topography due to the parallax that takes place during the tilting of the sample along the microscope eucentric plane. Several investigators have used reconstruction techniques to correlate some fractographic parameters, such as fractal dimension and fractured to projected area ratio, to the mechanical properties of materials, such as fracture toughness and tensile strength. So far, the search for a clear relationship between the fracture topography and mechanical properties has provided ambiguous results. The present work applied a surface metrology software to reconstruct three-dimensionally fracture surfaces (transgranular cleavage, intergranular and dimple fracture), corrosion pits and tribo-surfaces in order to explore the potential of this stereophotogrammetry technique. The existence of a variation in the calculated topographic parameters with the conditions of SEM image acquisition reinforces the importance of both good image acquisition and accurate calibration methods in order to validate this 3D reconstruction technique in metrological terms. Preliminary results did not indicate the existence of a clear relationship between either the true to project area ratio and CVN absorbed energy or the fractal dimension and CVN absorbed energy. It is likely that each fracture mechanism presents a proper relationship between the fractographic parameters and mechanical properties. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Intravascular ultrasound (IVUS) image segmentation can provide more detailed vessel and plaque information, resulting in better diagnostics, evaluation and therapy planning. A novel automatic segmentation proposal is described herein; the method relies on a binary morphological object reconstruction to segment the coronary wall in IVUS images. First, a preprocessing followed by a feature extraction block are performed, allowing for the desired information to be extracted. Afterward, binary versions of the desired objects are reconstructed, and their contours are extracted to segment the image. The effectiveness is demonstrated by segmenting 1300 images, in which the outcomes had a strong correlation to their corresponding gold standard. Moreover, the results were also corroborated statistically by having as high as 92.72% and 91.9% of true positive area fraction for the lumen and media adventitia border, respectively. In addition, this approach can be adapted easily and applied to other related modalities, such as intravascular optical coherence tomography and intravascular magnetic resonance imaging. (E-mail: matheuscardosomg@hotmail.com) (C) 2011 World Federation for Ultrasound in Medicine & Biology.
Resumo:
Despite its importance to agriculture, the genetic basis of heterosis is still not well understood. The main competing hypotheses include dominance, overdominance, and epistasis. NC design III is an experimental design that. has been used for estimating the average degree of dominance of quantitative trait 106 (QTL) and also for studying heterosis. In this study, we first develop a multiple-interval mapping (MIM) model for design III that provides a platform to estimate the number, genomic positions, augmented additive and dominance effects, and epistatic interactions of QTL. The model can be used for parents with any generation of selling. We apply the method to two data sets, one for maize and one for rice. Our results show that heterosis in maize is mainly due to dominant gene action, although overdominance of individual QTL could not completely be ruled out due to the mapping resolution and limitations of NC design III. For rice, the estimated QTL dominant effects could not explain the observed heterosis. There is evidence that additive X additive epistatic effects of QTL could be the main cause for the heterosis in rice. The difference in the genetic basis of heterosis seems to be related to open or self pollination of the two species. The MIM model for NC design III is implemented in Windows QTL Cartographer, a freely distributed software.
Resumo:
A nuclear magnetic resonance (NMR) spectroscopic method was validated for the quantitative determination of dimethylaminoethanol (DMAE) in cosmetic formulations. The linearity in the range from 0.5000 to 1.5000 g (DMAE salt/mass maleic acid) presents a correlation coefficient > 0.99 for all DMAE salts. The repeatability (intraday), expressed as relative standard deviation, ranged from 1.08 to 1.44% for samples and 1.31 to 1.88% for raw materials. The detection limit and quantitation limit were 0.0017 and 0.0051 g for DMAE, 0.0018 and 0.0054 g for DMAE bitartrate, and 0.0023 and 0.0071 g for DMAE acetamidobenzoate, respectively. The proposed method is simple, precise, and accurate and can be used in the quality control of raw materials and cosmetic gels containing these compounds as active substances.
Resumo:
The aim of this study was to develop and validate selective and sensitive methods for quantitative determination of an antibacterial agent, gemifloxacin, in tablets by high performance liquid chromatography (HPLC) and capillary zone electrophoresis (CZE). The HPLC method was carried out on a LiChrospher (R) 100 RP-8e, 5 mu m (125 x 4 mm) column with a mobile phase composed of tetrahydrofuran-water (25:75, v/v) with 0.5 % of triethylamine and pH adjusted to 3.0 with orthophosphoric acid. The CZE method was performed using 50 mM sodium tetraborate buffer (pH 8.6). Samples were injected hydrodynamicaly (0.5 psi, 5 s) and the electrophoretic system was operated under normal polarity, at +20 kV and capillary temperature of 18 degrees C. A fused-silica capillary 40.2 cm (30 cm effective length) x 75 mu m i.d. was used. Both, HPLC and CZE could be interesting and efficient techniques to be applied for quality control in pharmaceutical industries.
Resumo:
A simple, fast, inexpensive and reliable capillary zone electrophoresis (CZE) method for the determination of econazole nitrate in cream formulations has been developed and validated. Optimum conditions comprised a pH 2.5 phosphate buffer at 20 mmol L(-1) concentration, +30 kV applied voltage in a 31.5 cm x 50 mu m I.D. capillary. Direct UV detection at 200 nm led to an adequate sensitivity without interference from sample excipients. A single extraction step of the cream sample in hydrochloric acid was performed prior to injection. Imidazole (100 mu g mL(-1)) was used as internal standard. Econazole nitrate migrates in approximately 1.2 min. The analytical curve presented a coefficient of correlation of 0.9995. Detection and quantitation limits were 1.85 and 5.62 mu g mL(-1), respectively. Excellent accuracy and precision were obtained. Recoveries varied from 98.1 to 102.5% and intra- and inter-day precisions, calculated as relative standard deviation (RSD), were better than 2.0%. The proposed CZE method presented advantageous performance characteristics and it can be considered suitable for the quality control of econazole nitrate cream formulations. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
High-performance liquid-chromatographic (HPLC) methods were validated for determination of pravastatin sodium (PS), fluvastatin sodium (FVS), atorvastatin calcium (ATC), and rosuvastatin calcium (RC) in pharmaceuticals. Two stability-indicating HPLC methods were developed with a small change (10%) in the composition of the organic modifier in the mobile phase. The HPLC method for each statin was validated using isocratic elution. An RP-18 column was used with mobile phases consisting of methanol-water (60:40, v/v, for PS and RC and 70:30, v/v, for FVS and ATC). The pH of each mobile phase was adjusted to 3.0 with orthophosphoric acid, and the flow rate was 1.0mL/min. Calibration plots showed correlation coefficients (r)0.999, which were calculated by the least square method. The detection limit (DL) and quantitation limit (QL) were 1.22 and 3.08 mu g/mL for PS, 2.02 and 6.12 mu g/mL for FVS, 0.44 and 1.34 mu g/mL for ATC, and 1.55 and 4.70 mu g/mL for RC. Intraday and interday relative standard deviations (RSDs) were 2.0%. The methods were applied successfully for quantitative determination of statins in pharmaceuticals.
Resumo:
The purpose of this study was to develop and validate analytical methods for determination of amlodipine besylate in tablets. Simple, accurate and precise liquid chromatographic and spectrophotometric methods are proposed. For the chromatographic method, the conditions were: a LiChrospher (R) 100 RP-18 Merck (R) (125 mm x 4.6 mm, 5 mu m) column; methanol/water containing 1 % of trietylamine adjusted to pH 5.0 with phosphoric acid (35:65) as mobile phase; a flow rate of 1.0 mL/min and UV detector at 238 nm. Linearity was in the range of 50.0 - 350.0 mu g/mL with a correlation coefficient (r) = 0.9999. For the spectrophotometric method, the first dilutions of samples were performed in methanol and the consecutives in ultrapure water. The quantitation was made at 364.4 nm. Linearity was determined within the range of 41.0 - 61.0 mu g/mL with a correlation coefficient (r) = 0.9996. Our results demonstrate that both methods can be used in routine analysis for quality control of tablets containing amlodipine besylate.