20 resultados para Pyroaurite-2H
Resumo:
The resolution of the natural racemic chromane 3,4-dihydro-5-hydroxy-2,7-dimethyl-8-(3 ``-methyl-2 ``-butenyl)-2-(4`-methyl-1`,3`-pentadienyl)-2H-1-benzopyran-6-carboxylic acid (1) isolated from the leaves of Peperomia obtusifolia has been accomplished using stereoselective HPLC. The absolute coil figuration of the resolved enantiomers was determined by the analysis of optical rotations and CD spectra. The finding of a racemic mixture instead of an enantiomerically pure metabolite raises questions about the final steps in the biosynthesis of this class of natural products, suggesting that the intramolecular chromane ring formation step may not be enzymatically controlled at all in P. obtusifolia. Chirality 21:799-801, 2009. (C) 2008 Wiley-Liss, Inc.
Resumo:
The trypanocidal activity of crude extracts and fractions from the leaves and stems of Peperomia obtusifolia (Piperaceae) was evaluated in vitro against the epimastigote forms of Trypanosoma cruzi. Bioactivity-guided fractionation of the most active extracts afforded seven known compounds, including three chromanes, two furofuran lignans and two flavone C-diglycosides. The most active compounds were the chromanes peperobtusin A and 3,4-dihydro-5-hydroxy-2,7-dimethyl-8-(2 ``-methyl-2 ``-butenyl)-2-(4`-methyl-1`,3`-pentadienyl)-2H-1-benzopyran-6-carboxylic acid, with IC(50) values of 3.1 mu M (almost three times more active than the positive control benznidazole, IC(50) 10.4 mu M) and 27.0 mu M, respectively. Cytotoxicity assays using peritoneal murine macrophages indicated that the chromanes were not toxic at the level of the IC(50) for trypanocidal activity. This is the first report on the trypanocidal activity besides unspecific cytotoxicity of chromanes from Peperomia species. Additionally it represents the first time isolation of 3,4-dihydro5-hydroxy-2,7-dimethyl-8-(2 ``-methyl-2 ``-butenyl)-2-(4`-methyl-1`,3`-pentadienyl)-2H-1-benzopyran-6-carboxylic acid from P. obtusifolia.
Resumo:
The synthesis and characterization of lanthanide(III) citrates with stoichiometries 1:1 and 2:3; [LnL center dot xH(2)O] and [Ln(2)(LH)(3)center dot 2H(2)O], Ln=La, Ce, Pr, Nd, Sm and Eu are reported. L stands for (C6O7H5)(3-) and LH for (C6O7H6)(2-). Infrared absorption spectra of both series evidence coordination of carboxylate groups through symmetric bridges or chelation. X-ray powder patterns show the amorphous character of [LnL center dot xH(2)O]. The compounds [Ln(2)LH(3)center dot 2H(2)O] are crystalline and isomorphous. Emission spectra of Eu compounds suggest C-2v symmetry for the coordination polyhedron of [LnL center dot xH(2)O] and C-4v for [Ln(2)(LH)(3)center dot 2H(2)O]. Thermal analyses (TG-DTG-DTA) were carried out for both series. The thermal analysis patterns of the two series are quite different and both fit in a 4-step model of thermal decomposition, with lanthanide oxides as final products.
Resumo:
The aim of the study was to investigate the anti-trypanocidal activities of natural chromene and chromene derivatives. Five chromenes were isolated from Piper gaudichaudianum and P. aduncum, and a further seven derivatives were prepared using standard reduction, methylation and acetylation procedures. These compounds were assayed in vitro against epimastigote forms of Trypanosoma cruzi, the causative agent of Chagas disease. The results showed that the most of the compounds, especially those possessing electron-donating groups as substituents on the aromatic ring, showed potent trypanocidal activity. The most active compound, [(2S)-methyl-2-methyl-8-(3 ``-methylbut-2 ``-enyl)-2-(4`-methylpent-3`-enyl)-2H-chromene-6-carboxylate], was almost four times more potent than benznidazole (the positive control) and showed an IC50 of 2.82 mu M. The results reveal that chromenes exhibit significant anti-trypanocidal activities and indicate that this class of natural product should be considered further in the development of new and more potent drugs for use in the treatment of Chagas disease.
Resumo:
Reaction of 2-acetylpyridine semicarbazone (H2APS), 3-acetylpyridine semicarbazone (H3APS) and 4-acetylpyridine semicarbazone (H4APS) with [VO(acac)(2)] (acac = acetylacetonate) gave [VO(H2APS)(acac)(2)] (1), (VO(H3APS)(acac)(2)] (2) and [VO(4APS)(acac) (H2O)] center dot 1/2H(2)O (3). Oxidation of complex 1 in acetonitrile gave [VO2(2APS)] (4). The crystal structures of complexes 1 and 4 have been determined. Complexes 1-3 were able to enhance glucose uptake and to inhibit glycerol release from adipocytes, which indicate their potential to act as insulin-mimics. (C) 2008 Elsevier Ltd. All rights reserved.