67 resultados para Pt-decorated tio(2)nt anode


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work the effect of doping concentration and depth profile of Cu atoms on the photocatalytic and surface properties of TiO(2) films were studied. TiO(2) films of about 200 nn thickness were deposited on glass substrates on which a thin Cu layer (5 nm) was deposited. The films were annealed during 1 s to 100 degrees C and 400 degrees C, followed by chemical etching of the Cu film. The grazing incidence X-ray fluorescence measurements showed a thermal induced migration of Cu atoms to depths between 7 and 31 nm. The X-ray photoelectron spectroscopy analysis detected the presence of TiO(2), Cu(2)O and Cu(0) phases and an increasing Cu content with the annealing temperature. The change of the surface properties was monitored by the increasing red-shift and absorption of the ultraviolet-visible spectra. Contact angle measurements revealed the formation of a highly hydrophilic surface for the film having a medium Cu concentration. For this sample photocatalytic assays, performed by methylene blue discoloration, show the highest activity. The proposed mechanism of the catalytic effect, taking place on Ti/Cu sites, is supported by results obtained by theoretical calculations. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we study the effect of doping depth profile on the photocatalytic and surface properties of TiO(2) films. Two thin film layers of TiO(2) (200 nm) and Co (5 nm), respectively, were deposited by physical evaporation on glass substrate. These films were annealed for 1 s at 100 and 400 A degrees C and the Co layer was removed by chemical etching. Atomic force microscopy (AFM) phase images showed changes in the surface in function of thermal treatment. The grazing-incidence X-ray fluorescence (GIXRF) measurements indicated that the thermal treatment caused migration of Co atoms to below the surface, the depths found were between 19 and 29 nm. The contact angle showed distinct values in function of the doped profile or Co surface concentration. The UV-vis spectra presented a red shift with the increasing of thermal treatment. Photocatalytical assays were performed by methylene blue discoloration and the higher activity was found for TiO(2)-Co treated at 400 A degrees C, the ESI-MS showed the fragments formed during the methylene blue decomposition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinetics and the thermodynamics of electrochemical intercalation of lithium into CeO(2)-TiO(2) films prepared by the sol-gel process were studied by galvanostatic intermittent titration technique (GITT) as function of the depth of lithium intercalation. The open-circuit-potential versus x in Li(x)(CeO(2)-TiO(2)) curve consists of two straight lines with different slopes, one in the range of 0.03 <= x <= 0.09 and the other of 0.09 < x <= 0.15. The standard Gibbs energy for lithium intercalation Delta G(1)(0) was 6kJ/mol for x = 0.09 in Li(x)(CeO(2)-TiO(2)) at room temperature. The chemical diffusion coefficient value, D(Li+), of lithium intercalation into thin film oxide was 2.14.10(-11) cm(2)/s at x = 0.15, and the value of the component diffusion coefficient D(Li+),(k) was about one order of magnitude lower than the coefficient of chemical diffusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work assesses the photocatalytic (TiO(2)/UV) degradation of a simulated reactive dye bath (Black 5, Red 239, Yellow 17, and auxiliary chemicals). Color removal was monitored by spectrophotometry. Mineralization was determined by DOC analyses. Photocatalytic, photolytic, and adsorption experiments were performed, showing that adsorption was negligible. After 30 min of irradiation, it was achieved 97% and 40% of color removal with photocatalysis and photolysis, respectively. No mineralization occurred within 30 min. A kinetic model composed of two, first-order in-series reactions was used. The first photocatalytic decolorization rate constant was k(1) = 2.6 min(-1) and the second k(2) = 0.011 min(-1). The fast decolorization of Reactive Black 5 dye is an indication that the number of azo and vinylsulfone groups in the dye molecule maybe a determining factor for the increased photolytic and photocatalytic color removal and degradation rates. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photocatalytic degradation of phenol in aqueous suspensions of TiO(2) under different salt concentrations in an annular reactor has been investigated. In all cases, complete removal of phenol and mineralization degrees above 90% were achieved. The reactor operational parameters were optimized and its hydrodynamics characterized in order to couple mass balance equations with kinetic ones. The photodegradation of the organics followed a Langmuir-Hinshelwood-Hougen- Watson lumped kinetics. From GC/MS analyses, several intermediates formed during oxidation have been identified. The main ones were catechol, hydroquinone, and 3-phenyl-2-propenal, in this order. The formation of negligible concentrations of 4-chlorophenol was observed only in high salinity medium. Acute toxicity was determined by using Artemia sp. as the test organism, which indicated that intermediate products were all less toxic than phenol and a significant abatement of the overall toxicity was accomplished, regardless of the salt concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The degradation of black dye commercial product (BDCP) composed of C.I. Disperse Blue 373, C.I. Disperse Orange 37, C.I. Disperse Violet 93 dyes was investigated by photoelectrocatalysis process. The dyes have shown high mutagenic activity with Salmonella strain YG1041 and TA98 with and without S9. Samples of BCPD dye submitted to conventional chlorination and photoelectrocatalytic oxidation were compared monitoring its products by HPLC using a diode array detector, spectrophotometry UV-vis, TOC removal, and mutagenicity potency. The photoelectrocatalytic method operating with Ti/TiO(2) as anode at +1.0 V and UV illumination presented fast oxidation of test solutions containing 10 mg L(-1) of dye in 0.1 mol L(-1) NaCl pH 4.0 leading to 100% of discoloration, 67% of mineralization, and negative response to all tested Salmonella strains. The formation of Cl(aEuro cent), CL(2) (aEuro cent) on photoelectrocatalytic medium improved the efficiency of the method in relation to conventional chlorination method that promoted 100% of discoloration, but only 8% of TOC removal and more mutagenic product.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The search for more efficient anode catalyst than platinum to be used in direct alcohol fuel cell systems is an important challenge. In this study, boron-doped diamond film surfaces were modified with Pt, Pt-SnO(2) and Pt-Ta(2)O(5) nano-crystalline deposits by the sol-gel method to study the methanol and ethanol electro-oxidation reactions in acidic medium. Electrochemical experiments carried out in steady-state conditions demonstrate that the addition of SnO(2) to Pt produces a very reactive electrocatalyst that possibly adsorbs and/or dissociate ethanol more efficiently than pure Pt changing the onset potential of the reaction by 190 mV toward less positive potentials. Furthermore, the addition of Ta(2)O(5) to Pt enhances the catalytic activity toward the methanol oxidation resulting in a negative shift of the onset potential of 170 mV. These synergic effects indicate that the addition of these co-catalysts inhibits the poisoning effect caused by strongly adsorbed intermediary species. Since the SnO(2) catalyst was more efficient for ethanol oxidation, it could probably facilitate the cleavage of the C-C bond of the adsorbed intermediate fragments of the reaction. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrocatalytic activity of Pt and RuO(2) mixed electrodes of different compositions towards methanol oxidation was investigated. The catalysts were prepared by thermal decomposition of polymeric precursors and characterized by energy dispersive X-ray, scanning electronic microscopy, X-ray diffraction and cyclic voltammetry. This preparation method allowed obtaining uniform films with controlled stoichiometry and high surface area. Cyclic voltammetry experiments in the presence of methanol showed that mixed electrodes decreased the potential peak of methanol oxidation by approximately 100 mV (RHE) when compared to the electrode containing only Pt. In addition, voltammetric experiments indicated that the Pt(0.6)Ru(0.4)O(y) electrode led to higher oxidation current densities at lower potentials. Chronoamperometry experiments confirmed the contribution of RuO(2) to the catalytic activity as well as the better performance of the Pt(0.6)Ru(0.4)O(y) electrode composition. Formic acid and CO(2) were identified as being the reaction products formed in the electrolysis performed at 400 and 600 mV. The relative formation of CO(2) was favored in the electrolysis performed at 400 mV (RHE) with the Pt(0.6)Ru(0.4)O(y) electrode. The presence of RuO(2) in Pt-Ru-based electrodes is important for improving the catalytic activity towards methanol electrooxidation. Moreover, the thermal decomposition of polymeric precursors seems to be a promising route for the production of catalysts applicable to DMFC. (C) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a study of the electrocatalysis of ethanol oxidation reactions in an acidic medium on Pt-CeO(2)/C (20 wt.% of Pt-CeO(2) on carbon XC-72R), prepared in different mass ratios by the polymeric precursor method. The mass ratios between Pt and CeO(2) (3:1, 2:1, 1:1, 1:2, 1:3) were confirmed by Energy Dispersive X-ray Analysis (EDAX). X-ray diffraction (XRD) structural characterization data shows that the Pt-CeO(2)/C catalysts are composed of nanosized polycrystalline non-alloyed deposits, from which reflections corresponding to the fcc (Pt) and fluorite (CeO(2)) structures were clearly observed. The mean crystallite sizes calculated from XRD data revealed that, independent of the mass ratio, a value close to 3 nm was obtained for the CeO(2) particles. For Pt, the mean crystallite sizes were dependent on the ratio of this metal in the catalysts. Low platinum ratios resulted in small crystallites. and high Pt proportions resulted in larger crystallites. The size distributions of the catalysts particles, determined by XRD, were confirmed by Transmission Electron Microscope (TEM) imaging. Cyclic voltammetry and chronoamperometic experiments were used to evaluate the electrocatalytic performance of the different materials. In all cases, except Pt-CeO(2)/C 1:1, the Pt-Ceo(2)/C catalysts exhibited improved performance when compared with Pt/C. The best result was obtained for the Pt-CeO(2)/C 1:3 catalyst, which gave better results than the Pt-Ru/C (Etek) catalyst. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single-phase perovskite structure Pb(1-x)Ba(x)TiO(3) thin films (x = 0.30, 0.50 and 0.70) were deposited on Pt/Ti/SiO(2)/Si substrates by the spin-coating technique. The dielectric study reveals that the thin films undergo a diffuse type ferroelectric phase transition, which shows a broad peak. An increase of the diffusivity degree with the increasing Barium contents was observed, and it was associated to a grain decrease in the studied composition range. The temperature dependence of the phonon frequencies was used to characterize the phase transition temperatures. Raman modes persist above tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive. The origin of these modes was interpreted in terms of breakdown of the local cubic symmetry by chemical disorder. The absence of a well-defined transition temperature and the presence of broad bands in some interval temperature above FE-PE phase transition temperature Suggested a diffuse type phase transition. This result corroborates the dielectric constant versus temperature data, which showed a broad ferroelectric phase transition in these thin films. The leakage Current density of the PBT thin films was studied at different temperatures and the data follow the Schottky emission model. Through this analysis the Schottky barrier height values 0.75, 0.53 and 0.34 eV were obtained to the PBT70, PBT50 and PBT30 thin films, respectively. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cuboctahedron (CUB) and icosahedron (ICO) model structures are widely used in the study of transition-metal (TM) nanoparticles (NPs), however, it might not provide a reliable description for small TM NPs such as the Pt(55) and Au(55) systems in gas phase. In this work, we combined density-functional theory calculations with atomic configurations generated by the basin hopping Monte Carlo algorithm within the empirical Sutton-Chen embedded atom potential. We identified alternative lower energy configurations compared with the ICO and CUB model structures, e. g., our lowest energy structures are 5.22 eV (Pt(55)) and 2.01 eV (Au(55)) lower than ICO. The energy gain is obtained by the Pt and Au diffusion from the ICO core region to the NP surface, which is driven by surface compression (only 12 atoms) on the ICO core region. Therefore, in the lowest energy configurations, the core size reduces from 13 atoms (ICO, CUB) to about 9 atoms while the NP surface increases from 42 atoms (ICO, CUB) to about 46 atoms. The present mechanism can provide an improved atom-level understanding of small TM NPs reconstructions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Degradation of Disperse Orange 1, Disperse Red 1 and Disperse Red 13 dyes has been performed using electrochemical oxidation on Pt electrode, chemical chlorination and photoelectrochemical oxidation on Ti/TiO(2) thin film electrodes in NaCl or Na(2)SO(4) medium. 100% discoloration was obtained for all tested methods after 1 h of treatment. Faster color removal was obtained by photoelectrocatalytic oxidation in 0.1 mol L(-1) NaCl pH 4.0 under UV light and an applied potential of +1.0V (vs SCE reference electrode), which indicates also values around 60% of TOC removal. The conventional chlorination method and electrochemical oxidation on Pt electrode resulted in negligible reduction of TOC removal. All dyes showed positive mutagenic activity in the Salmonella/microsome assay with the strain TA98 in the absence and presence of S9 (exogenous metabolic activation). Nevertheless, there is complete reduction of the mutagenic activity after 1 h of photoelectrocatalytic oxidation, suggesting that this process would be good option to remove disperse azo dyes from aqueous media. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Reports of iatrogenic thermal injuries during laparoscopic surgery using new generation vessel-sealing devices, as well as anecdotal reports of hand burn injuries during hand-assisted surgeries, have evoked questions about the temperature safety profile and the cooling properties of these instruments. Methods This study involved video recording of temperatures generated by different instruments (Harmonic ACE [ACE], Ligasure V [LV], and plasma trisector [PT]) applied according the manufacturers` pre-set settings (ACE setting 3; LV 3 bars, and the PT TR2 50W). The video camera used was the infrared Flex Cam Pro directed to three different types of swine tissue: (1) peritoneum (P), (2) mesenteric vessels (MV), and (3) liver (L). Activation and cooling temperature and time were measured for each instrument. Results The ACE device produced the highest temperatures (195.9 degrees +/- 14.5 degrees C) when applied against the peritoneum, and they were significantly higher than the other instruments (LV = 96.4 degrees +/- 4.1 degrees C, and PT = 87 degrees +/- 2.2 degrees C). The LV and PT consistently yielded temperatures that were < 100 degrees C independent of type of tissue or ""on""/ ""off"" mode. Conversely, the ACE reached temperatures higher than 200 degrees C, with a surprising surge after the instrument was deactivated. Moreover, temperatures were lower when the ACE was applied against thicker tissue (liver). The LV and PT cooling times were virtually equivalent, but the ACE required almost twice as long to cool. Conclusions The ACE increased the peak temperature after deactivation when applied against thick tissue (liver), and the other instruments inconsistently increased peak temperatures after they were turned off, requiring few seconds to cool down. Moreover, the ACE generated very high temperatures (234.5 degrees C) that could harm adjacent tissue or the surgeon`s hand on contact immediately after deactivation. With judicious use, burn injury from these instruments can be prevented during laparoscopic procedures. Because of the high temperatures generated by the ACE device, particular care should be taken when it is used during laparoscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To evaluate the potential of 980-nm gallium aluminum arsenide (GaAlAs) and 1064-nm neodymium-doped yttrium aluminum garnet (Nd:YAG) lasers to reduce bacteria after irradiation of implant surfaces contaminated with Enterococcus faecalis and Porphyromonas gingivalis and on irradiated implant surface morphology. Background: Despite the frequency of implant success, some implant loss is related to peri-implantitis because of difficulty in eliminating the biofilm. Methods: Implants (3.75 x 13 mm) with machined surfaces, surfaces sand blasted with titanium oxide (TiO(2)), and sand-blasted and acid-etched surfaces were exposed to P. gingivalis and E. faecalis cultures and irradiated with 980-nm GaAlAs or 1064-nm Nd: YAG lasers. After laser treatments, the number of remaining colony-forming units and implant surface morphology were analyzed using scanning electron microscopy (SEM). Results: The Nd: YAG laser was able to promote a total contamination reduction on all implants irradiated. The results with the GaAlAs laser showed 100% bacteria reduction on the implants irradiated with 3 W. Irradiation with 2.5 W and 3 W achieved 100% of bacteria reduction on P. gingivalis-contaminated implants. Decontamination was not complete for the sand-blasted TiO(2) (78.6%) and acid-etched surfaces (49.4%) contaminated with E. faecalis and irradiated with 2.5 W. SEM showed no implant surface changes. Conclusion: The wavelengths used in this research provided bacteria reduction without damaging implant surfaces. New clinical research should be encouraged for the use of this technology in the treatment of peri-implantitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A saddle shaped tetracluster porphyrin species containing four [Ru(3)O(OAc)(6)(py)(2)](+) clusters coordinated to the N-pyridyl atoms of 5,10,15,20-tetra(3-pyridyl)porphyrin, H(2)(3-TCPyP), has been investigated in comparison with the planar tetra(4-pyridyl) porphyrin analogue H(2)(4-TCPyP). The steric effects from the bulky peripheral complexes play a critical role in the H(2)(3-TCPyP) species, determining a non-planar configuration around the porphyrin centre and precluding any significant pi-electronic coupling, in contrast with the less hindered H(2)(4-TCPyP) species. Both systems exhibit a photoelectrochemical response in the presence of nanocrystalline TiO(2) films, involving the porphyrin excitation around 450 nm. However, only in the H(2)(4-TCPyP) case do the cluster moieties also contribute to the photoinduced electron injection process at 670 nm, reflecting the relevance of the electronic coupling between the porphyrin centre and the peripheral complexes.