26 resultados para Power Converter Control
Resumo:
This paper presents results of research into the use of the Bellman-Zadeh approach to decision making in a fuzzy environment for solving multicriteria power engineering problems. The application of the approach conforms to the principle of guaranteed result and provides constructive lines in computationally effective obtaining harmonious solutions on the basis of solving associated maxmin problems. The presented results are universally applicable and are already being used to solve diverse classes of power engineering problems. It is illustrated by considering problems of power and energy shortage allocation, power system operation, optimization of network configuration in distribution systems, and energetically effective voltage control in distribution systems. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We preserit a computational procedure to control art experimental chaotic system by applying the occasional proportional feedback (OPF) method. The method implementation uses the fuzzy theory to relate the variable correction to the necessary adjustment in the control parameter. As an application We control the chaotic attractors of the Chua circuit. We present file developed circuits and algorithms to implement this control in real time. To simplify the used procedure, we use it low resolution analog to digital converter compensated for a lowpass filter that facilitates similar applications to control other systems. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper studies a simplified methodology to integrate the real time optimization (RTO) of a continuous system into the model predictive controller in the one layer strategy. The gradient of the economic objective function is included in the cost function of the controller. Optimal conditions of the process at steady state are searched through the use of a rigorous non-linear process model, while the trajectory to be followed is predicted with the use of a linear dynamic model, obtained through a plant step test. The main advantage of the proposed strategy is that the resulting control/optimization problem can still be solved with a quadratic programming routine at each sampling step. Simulation results show that the approach proposed may be comparable to the strategy that solves the full economic optimization problem inside the MPC controller where the resulting control problem becomes a non-linear programming problem with a much higher computer load. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Postural control was studied when the subject was kneeling with erect trunk in a quiet posture and compared to that obtained during quiet standing. The analysis was based on the center of pressure motion in the sagittal plane (CPx), both in the time and in the frequency domains. One could assume that postural control during kneeling would be poorer than in standing because it is a less natural posture. This could cause a higher CPx variability. The power spectral density (PSD) of the CPx obtained from the experimental data in the kneeling position (KN) showed a significant decrease at frequencies below 0.3 Hz compared to upright (UP) (P < 0.01), which indicates less sway in KN. Conversely, there was an increase in fast postural oscillations (above 0.7 Hz) during KN compared to UP (P < 0.05). The root mean square (RMS) of the CPx was higher for UP (P < 0.01) while the mean velocity (MV) was higher during KN (P < 0.05). Lack of vision had a significant effect on the PSD and the parameters estimated from the CPx in both positions. We also sought to verify whether the changes in the PSD of the CPx found between the UP and KN positions were exclusively due to biomechanical factors (e.g., lowered center of gravity), or also reflected changes in the neural processes involved in the control of balance. To reach this goal, besides the experimental approach, a simple feedback model (a PID neural system, with added neural noise and controlling an inverted pendulum) was used to simulate postural sway in both conditions (in KN the pendulum was shortened, the mass and the moment of inertia were decreased). A parameter optimization method was used to fit the CPx power spectrum given by the model to that obtained experimentally. The results indicated that the changed anthropometric parameters in KN would indeed cause a large decrease in the power spectrum at low frequencies. However, the model fitting also showed that there were considerable changes also in the neural subsystem when the subject went from standing to kneeling. There was a lowering of the proportional and derivative gains and an increase in the neural noise power. Additional increases in the neural noise power were found also when the subject closed his eyes.
Resumo:
This article presents a back-electromotive force (BEMF)-based technique of detection for sensorless brushless direct current motor (BLDCM) drivers. The BLDCM has been chosen as the energy converter in rotary or pulsatile blood pumps that use electrical motors for pumping. However, in order to operate properly, the BLDCM driver needs to know the shaft position. Usually, that information is obtained through a set of Hall sensors assembled close to the rotor and connected to the electronic controller by wires. Sometimes, a large distance between the motor and controller makes the system susceptible to interference on the sensor signal because of winding current switching. Thus, the goal of the sensorless technique presented in this study is to avoid this problem. First, the operation of BLDCM was evaluated on the electronic simulator PSpice. Then, a BEMF detector circuitry was assembled in our laboratories. For the tests, a sensor-dependent system was assembled where the direct comparison between the Hall sensors signals and the detected signals was performed. The obtained results showed that the output sensorless detector signals are very similar to the Hall signals at speeds of more than 2500 rpm. Therefore, the sensorless technique is recommended as a responsible or redundant system to be used in rotary blood pumps.
Resumo:
A thermodynamic information system for diagnosis and prognosis of an existing power plant was developed. The system is based on an analytic approach that informs the current thermodynamic condition of all cycle components, as well as the improvement that can be obtained in the cycle performance by the elimination of the discovered anomalies. The effects induced by components anomalies and repairs in other components efficiency, which have proven to be one of the main drawbacks in the diagnosis and prognosis analyses, are taken into consideration owing to the use of performance curves and corrected performance curves together with the thermodynamic data collected from the distributed control system. The approach used to develop the system is explained, the system implementation in a real gas turbine cogeneration combined cycle is described and the results are discussed. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This study evaluated the role of arterial baroreceptors in arterial pressure (AP) and pulse interval (PI) regulation in conscious C57BL mice. Male animals, implanted with catheters in a femoral artery and a jugular vein, were submitted to sino-aortic (SAD), aortic (Ao-X) or carotid sinus denervation (Ca-X), 5 daysprior to the experiments. After basal recording of AP, the lack of reflex bradycardia elicited by administration of phenylephrine was used to confirm the efficacy of SAD, and cardiac autonomic blockade with methylatropine and propranolol was performed. The AP and PI variability were calculated in the time and frequency domains (spectral analysis/fast Fourier transform) with the spectra quantified in low-(LF; 0.25-1Hz) and high-frequency bands (HF; 1-5Hz). Basal AP and AP variability were higher after SAD, Ao-X or Ca-X than in intact mice. Pulse interval was similar among the groups, whereas PI variability was lower after SAD. Atropine elicited a slight tachycardia in control mice but did not change PI after total or partial denervation. The bradycardia caused by propranolol was higher after SAD, Ao-X or Ca-X compared with intact mice. The increase in the variability of AP was accompanied by a marked increase in the LF and HF power of the AP spectra after baroreceptor denervation. The LF and HF power of the PI were reduced by SAD and by Ao-X or Ca-X. Therefore, both sino-aortic and partial baroreceptor denervation in mice elicits hypertension and a remarkable increase in AP variability and cardiac sympathetic tonus. Spectral analysis showed an important contribution of the baroreflex in the power of LF oscillations of the PI spectra. Both sets of baroreceptors seem to be equally important in the autonomic regulation of the cardiovascular system in mice.
Resumo:
Objective: To investigate the effect of aerobic physical training on cardiovascular autonomic control in ovariectomized rats using different approaches. Design: Female Wistar rats were divided into four groups: sedentary sham rats (group SSR), trained sham rats (group TSR), sedentary ovariectomized rats (group SOR), and trained ovariectomized rats (group TOR). Animals from the trained groups were submitted to a physical training protocol (swimming) for 12 weeks. Results: Pharmacological evaluation showed that animals from group TSR had an increase in their cardiac vagal tonus compared with the animals from groups SSR and SOR. The analysis of heart rate variability (HRV) showed that groups TSR and SOR had fewer low-frequency oscillations (0.20-0.75 Hz) compared with groups SSR and TOR. When groups TSR and SOR were compared, the former was found to have fewer oscillations. With regard to high-frequency oscillations (0.75-2.5 Hz), group SSR had a reduction compared with the other groups, whereas group TSR had the greatest oscillation compared with groups SOR and TOR, with all values expressed in normalized units. Analysis of HRV was performed after pharmacological blockade, and low-frequency oscillations were found to be predominantly sympathetic in sedentary animals, whereas there was no predominance in trained animals. Conclusion: Ovariectomy did not change the tonic autonomic control of the heart and, in addition, reduced the participation of sympathetic component in cardiac modulation. Physical training, on the other hand, increased the participation of parasympathetic modulation on the HRV, including ovariectomized rats.
Resumo:
Objective. The objective of this study was to evaluate the disinfection degree of dentine caused by the use of diode laser after biomechanical procedures. Study design. Thirty teeth were sectioned and roots were autoclaved and incubated for 4 weeks with a suspension of Enterococcus faecalis. The specimens were randomly divided into 3 groups (n = 10): G1, instrumented with rotary files, irrigated with 0.5% sodium hypochlorite and 17% EDTA-T, and then irradiated by 830-nm diode laser at 3 W; G2, the same procedures as G1 but without laser irradiation; and G3, irrigation with saline solution (control). Dentin samples of each third were collected with carbide burs and aliquots were sowed to count viable cells. Results. The disinfection degree achieved was 100% in G1 and 98.39% in G2, when compared to the control group (G3). Conclusion. Diode laser irradiation provided increased disinfection of the deep radicular dentin in the parameters and samples tested.
Resumo:
In the paper, we discuss dynamics of two kinds of mechanical systems. Initially, we consider vibro-impact systems which have many implementations in applied mechanics, ranging from drilling machinery and metal cutting processes to gear boxes. Moreover, from the point of view of dynamical systems, vibro-impact systems exhibit a rich variety of phenomena, particularly chaotic motion. In this paper, we review recent works on the dynamics of vibro-impact systems, focusing on chaotic motion and its control. The considered systems are a gear-rattling model and a smart damper to suppress chaotic motion. Furthermore, we investigate systems with non-ideal energy source, represented by a limited power supply. As an example of a non-ideal system, we analyse chaotic dynamics of the damped Duffing oscillator coupled to a rotor. Then, we show how to use a tuned liquid damper to control the attractors of this non-ideal oscillator.
Resumo:
Objective: The aim of this study was to verify the discriminative power of the most widely used pain assessment instruments. Methods: The sample consisted of 279 subjects divided into Fibromyalgia Group (FM- 205 patients with fibromyalgia) and Control Group (CG-74 healthy subjects), mean age 49.29 +/- 10.76 years. Only 9 subjects were male, 6 in FM and 3 in CG. FM were outpatients from the Rheumatology Clinic of the University of Sao Paulo - Hospital das Clinicas (HCFMUSP); the CG included people accompanying patients and hospital staff with similar socio-demographic characteristics. Three instruments were used to assess pain: the McGill Pain Questionnaire (MPQ), the Visual Analog Scale (VAS), and the Dolorimetry, to measure pain threshold on tender points (generating the TP index). In order to assess the discriminative power of the instruments, the measurements obtained were submitted to descriptive analysis and inferential analysis using ROC Curve - sensibility (S), specificity (S I) and area under the curve (AUC) - and Contingence tables with Chi-square Test and odds ratio. Significance level was 0.05. Results: Higher sensibility, specificity and area under the curve was obtained by VAS (80%, 80% and 0.864, respectively), followed by Dolorimetry (S 77%, S177% and AUC 0.851), McGill Sensory (S 72%, S167% and AUC 0.765) and McGill Affective (S 69%, S1 67% and AUC 0.753). Conclusions: VAS presented the higher sensibility, specificity and AUC, showing the greatest discriminative power among the instruments. However, these values are considerably similar to those of Dolorimetry.