72 resultados para Portal Corporativo
Resumo:
CONTEXT: Hepatic fibrosis occurs in response to several aggressive agents and is a predisposing factor in cirrhosis. Hepatotrophic factors were shown to stimulate liver growth and to restore the histological architecture of the liver. They also cause an improvement in liver function and accelerate the reversion of fibrosis before it progresses to cirrhosis. OBJECTIVE: To test the effects of hepatic fibrosis solution composed by amino acids, vitamins, glucose, insulin, glucagon and triiodothyronine on hepatic fibrosis in rats. METHODS: Fibrosis was induced in rats by gastric administration of dimethylnitrosamine (10 mg/kg) for 5 weeks. After liver biopsy, the rats received either hepatotrophic factors solution (40 mg/kg/day) or saline solution for 10 days by intraperitoneal injection. Blood samples and liver fragments were collected for hepatic function analysis, standard histopathology evaluation, and morphometric collagen quantification. RESULTS: Rats in the hepatotrophic factors group showed a decrease of the histopathological components of fibrosis and an increase of their hepatic mass (12.2%). There was no development of neoplasic lesions in both groups. Compared with the saline group, the hepatotrophic factors group also had a decrease of blood levels of hepatic-lesion markers (AST, ALT) and a decrease of collagen content in the portal spaces (31.6%) and perisinusoidal spaces (42.3%), as well as around the hepatic terminal vein (57.7%). Thus, hepatotrophic factors administration in the portal blood promoted a regenerative hepatic response, with an overall reduction of the volumetric density of collagen, improved hepatic function, and a general improvement in the histopathological aspects of fibrosis. CONCLUSION: Taken together, these results suggest the potential therapeutic use of this hepatotrophic factors solution to treat chronic liver diseases.
Resumo:
Introduction. The ToLigado Project - Your School Interactive Newspaper is an interactive virtual learning environment conceived, developed, implemented and supported by researchers at the School of the Future Research Laboratory of the University of Sao Paulo, Brazil. Method. This virtual learning environment aims to motivate trans-disciplinary research among public school students and teachers in 2,931 schools equipped with Internet-access computer rooms. Within this virtual community, students produce collective multimedia research documents that are immediately published in the portal. The project also aims to increase students' autonomy for research, collaborative work and Web authorship. Main sections of the portal are presented and described. Results. Partial results of the first two years' implementation are presented and indicate a strong motivation among students to produce knowledge despite the fragile hardware and software infrastructure at the time. Discussion. In this new environment, students should be seen as 'knowledge architects' and teachers as facilitators, or 'curiosity managers'. The ToLigado portal may constitute a repository for future studies regarding student attitudes in virtual learning environments, students' behaviour as 'authors', Web authorship involving collective knowledge production, teachers' behaviour as facilitators, and virtual learning environments as digital repositories of students' knowledge construction and social capital in virtual learning communities.
Resumo:
Background: A relative friability to capture a sufficiently large patient population in any one geographic location has traditionally limited research into rare diseases. Methods and Results: Clinicians interested in the rare disease lymphangioleiomyomatosis (LAM) have worked with the LAM Treatment Alliance, the MIT Media Lab, and Clozure Associates to cooperate in the design of a state-of-the-art data coordination platform that can be used for clinical trials and other research focused on the global LAM patient population. This platform is a component of a set of web-based resources, including a patient self-report data portal, aimed at accelerating research in rare diseases in a rigorous fashion. Conclusions: Collaboration between clinicians, researchers, advocacy groups, and patients can create essential community resource infrastructure to accelerate rare disease research. The International LAM Registry is an example of such an effort.
Resumo:
AIM: To compare the histologic features of the liver in intrahepatic neonatal cholestasis (IHNC) with infectious, genetic-endocrine-metabolic, and idiopathic etiologies. METHODS: Liver biopsies from 86 infants with IHNC were evaluated. The inclusion criteria consisted of jaundice beginning at 3 mo of age and a hepatic biopsy during the 1st year of life. The following histologic features were evaluated: cholestasis, eosinophilia, giant cells, erythropoiesis, siderosis, portal fibrosis, and the presence of a septum. RESULTS: Based on the diagnosis, patients were classified into three groups: group 1 (infectious; n = 18), group 2 (genetic-endocrine-metabolic; n = 18), and group 3 (idiopathic; n = 50). There were no significant differences with respect to the following variables: cholestasis, eosinophilia, giant cells, siderosis, portal fibrosis, and presence of a septum. A significant difference was observed with respect to erythropoiesis, which was more severe in group 1 (Fisher's exact test, P = 0.016). CONCLUSION: A significant difference was observed in IHNC of infectious etiology, in which erythropoiesis was more severe than that in genetic-endocrine-metabolic and idiopathic etiologies, whereas there were no significant differences among cholestasis, eosinophilia, giant cells, siderosis, portal fibrosis, and the presence of a septum. (C) 2009 The WIG Press and Baishideng. All rights reserved.
Resumo:
The aim of this study was to examine the incidence and factors associated with the severity of liver fibrosis in 234 coinfected patients in Brazil. Patients were cared for in our clinic, from 1996 to 2004. Eligible patients were defined as patients with documented HIV and hepatitis C virus (HCV) infections and had previously undergone a liver biopsy. Patients with persistently normal alanine aminotransferase (ALT) were also included. The variables selected for study were age, gender, risk category, history of high alcohol consumption, CD4(+) T cell count, antiretroviral therapy usage, HCV genotype and duration of HCV infection. Stage of fibrosis was scored as follows: F0, no fibrosis; F1, portal fibrosis with no septa; F2, portal fibrosis with few septa; F3, bridging fibrosis with many septa; and F4, cirrhosis. The liver fibrosis stage was F3 in 39 (16.6%) and F4 in 20(8.5%) patients. Among patients with normal ALT, the liver fibrosis stage was F3-F4 in three patients (5.6%). Predictors of severe liver fibrosis (17344) by multivariate analysis were age (older patients) and genotype 3 (genotype I odds ratio [OR], 0.28; 95% confidence interval [0], 0.12 0.65). In summary, in the present study severe liver fibrosis was found in 25% of our patients and was associated with an age of more than 38 years at the time of liver biopsy as well as, HCV genotype 3. No differences were found with respect to CD4(+) T cell counts although patients with a CD4(+) T cell count greater than 50 were excluded.
Resumo:
We observe zero-differential resistance states at low temperatures and moderate direct currents in a bilayer electron system formed by a wide quantum well. Several regions of vanishing resistance evolve from the inverted peaks of magneto-intersubband oscillations as the current increases. The experiment, supported by a theoretical analysis, suggests that the origin of this phenomenon is based on instability of homogeneous current flow under conditions of negative differential resistivity, which leads to formation of current domains in our sample, similar to the case of single-layer systems.
Resumo:
Experimental studies of magnetoresistance in high-mobility wide quantum wells reveal oscillations which appear with an increase in temperature to 10 K and whose period is close to that of Shubnikov-de Haas oscillations. The observed phenomenon is identified as magnetointersubband oscillations caused by the scattering of electrons between two occupied subbands and the third subband which becomes occupied as a result of thermal activation. These small-period oscillations are less sensitive to thermal suppression than the large-period magnetointersubband oscillations caused by the scattering between the first and the second subbands. Theoretical study, based on consideration of electron scattering near the edge of the third subband, gives a reasonable explanation of our experimental findings.
Resumo:
Magnetotransport measurements on a high-mobility electron bilayer system formed in a wide GaAs quantum well reveal vanishing dissipative resistance under continuous microwave irradiation. Profound zero-resistance states (ZRS) appear even in the presence of additional intersubband scattering of electrons. We study the dependence of photoresistance on frequency, microwave power, and temperature. Experimental results are compared with a theory demonstrating that the conditions for absolute negative resistivity correlate with the appearance of ZRS.
Resumo:
We study the transport properties of HgTe-based quantum wells containing simultaneously electrons and holes in a magnetic field B. At the charge neutrality point (CNP) with nearly equal electron and hole densities, the resistance is found to increase very strongly with B while the Hall resistivity turns to zero. This behavior results in a wide plateau in the Hall conductivity sigma(xy) approximate to 0 and in a minimum of diagonal conductivity sigma(xx) at nu = nu(p) - nu(n) = 0, where nu(n) and nu(p) are the electron and hole Landau level filling factors. We suggest that the transport at the CNP point is determined by electron-hole ""snake states'' propagating along the nu = 0 lines. Our observations are qualitatively similar to the quantum Hall effect in graphene as well as to the transport in a random magnetic field with a zero mean value.
Resumo:
We study a Al(x)Ga(x-1)As parabolic quantum well (PQW) with GaAs/Al(x)Ga(x-1)As square superlattice. The magnetotransport in PQW with intentionally disordered short-period superlattice reveals a surprising transition from electrons distribution over whole parabolic well to independent-layer states with unequal density. The transition occurs in the perpendicular magnetic field at Landau filling factor v approximate to 3 and is signaled by the appearance of the strong and developing fractional quantum Hall (FQH) states and by the enhanced slope of the Hall resistance. We attribute the transition to the possible electron localization in the x-y plane inside the lateral wells, and formation of the FQH states in the central well of the superlattice, driven by electron-electron interaction.
Resumo:
We report on temperature-dependent magnetoresistance measurements in balanced double quantum wells exposed to microwave irradiation for various frequencies. We have found that the resistance oscillations are described by the microwave-induced modification of electron distribution function limited by inelastic scattering (inelastic mechanism), up to a temperature of T*similar or equal to 4 K. With increasing temperature, a strong deviation of the oscillation amplitudes from the behavior predicted by this mechanism is observed, presumably indicating a crossover to another mechanism of microwave photoresistance, with similar frequency dependence. Our analysis shows that this deviation cannot be fully understood in terms of contribution from the mechanisms discussed in theory.
Resumo:
The transport properties of the ""inverted"" semiconductor HgTe-based quantum well, recently shown to be a two-dimensional topological insulator, are studied experimentally in the diffusive regime. Nonlocal transport measurements are performed in the absence of magnetic field, and a large signal due to the edge states is observed. This shows that the edge states can propagate over a long distance, similar to 1 mm, and therefore, there is no difference between local and nonlocal electrical measurements in a topological insulator. In the presence of an in-plane magnetic field a strong decrease of the local resistance and complete suppression of the nonlocal resistance is observed. We attribute this behavior to an in-plane magnetic-field-induced transition from the topological insulator state to a conventional bulk metal state.
Resumo:
Magnetoresistance of two-dimensional electron systems with several occupied subbands oscillates owing to periodic modulation of the probability of intersubband transitions by the quantizing magnetic field. In addition to previous investigations of these magnetointersubband (MIS) oscillations in two-subband systems, we report on both experimental and theoretical studies of such a phenomenon in three-subband systems realized in triple quantum wells. We show that the presence of more than two subbands leads to a qualitatively different MIS oscillation picture, described as a superposition of several oscillating contributions. Under a continuous microwave irradiation, the magnetoresistance of triple-well systems exhibits an interference of MIS oscillations and microwave-induced resistance oscillations. The theory explaining these phenomena is presented in the general form, valid for an arbitrary number of subbands. A comparison of theory and experiment allows us to extract temperature dependence of quantum lifetime of electrons and to confirm the applicability of the inelastic mechanism of microwave photoresistance for the description of magnetotransport in multilayer systems.
Emergent and reentrant fractional quantum Hall effect in trilayer systems in a tilted magnetic field
Resumo:
Magnetotransport measurements in triple-layer electron systems with high carrier density reveal fractional quantum Hall effect at total filling factors nu>2. With an in-plane magnetic field we are able to control the suppression of interlayer tunneling which causes a collapse of the integer quantum Hall plateaus at nu=2 and nu=4, and an emergence of fractional quantum Hall states with increasing tilt angles. The nu=4 state is replaced by three fractional quantum Hall states with denominator 3. The state nu=7/3 demonstrates reentrant behavior and the emergent state at nu=12/5 has a nonmonotonic behavior with increasing in-plane field. We attribute the observed fractional quantum Hall plateaus to correlated states in a trilayer system.