30 resultados para Ponte ferroviária
Resumo:
Tramadol (T) is available as a racemic mixture of (+)-trans-T and (-)-trans-T. The main metabolic pathways are O-demethylation and N-demethylation, producing trans-O-desmethyltramadol (M1) and trans-N-desmethyltramadol (M2) enantiomers, respectively. The analgesic effect of T is related to the opioid activity of (+)-trans-T and (+)-M1 and to the monoaminergic action of (+/-)-trans-T. This is the first study using tandem mass spectrometry as a detection system for the simultaneous analysis of trans-T, M1, and M2 enantiomers. The analytes were resolved on a Chiralpak (R) AD column using hexane: ethanol (95.5:4.5, v/v) plus 0.1% diethylamine as the mobile phase. The quantitation limits were 0.5 ng/ml for trans-T and M1 and 0.1 ng/ml for M2. The method developed and validated here was applied to a pharmacokinetic study in rats. Male Wistar rats (n = 6 at each time point) received a single oral dose of 20 mg/kg racemic trans-T. Blood samples were collected up to 12 h after drug administration. The kinetic disposition of trans-T and M2 was enantioselective (AUC((+)/(-)) ratio = 4.16 and 6.36, respectively). The direction and extent of enantioselectivity in the pharmacokinetics of trans-T and M2 in rats were comparable to data previously reported for healthy volunteers, suggesting that rats are a suitable model for enantioselective studies of trans-T pharmacokinetics. Chirality 23: 287-293, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
The use of metformin throughout gestation by pregnant women with polycystic ovary syndrome (PCOS) significantly reduces the number of first trimester spontaneous abortions and the rate of occurrence of gestational diabetes. The objective of this study was to investigate the pharmacokinetics and the placental transfer of metformin in pregnant women with PCOS. Eight pregnant women with PCOS taking 850 mg metformin every 12 h during the third trimester of pregnancy were evaluated. Maternal blood samples were collected at steady state during the dose interval (0-12 h). Maternal and umbilical cord blood samples were also obtained at delivery. Metformin plasma concentrations were analyzed by high-performance liquid chromatography, and pharmacokinetic parameters were determined using a non-compartmental model. Data are reported as median and minimum and maximum values. Metformin pharmacokinetic parameters were: t(A1/2), 3.8 (2.8-5.4) h; t(max), 2.0 (0.5-3.0) h; C(max), 1.4 (0.5-2.1) mg/L; C(mean), 0.5 (0.2-0.9) mg/L; AUC(0-12), 6.4 (1.1-9.2) mg h/L; Cl/f, 105 (60-274) L/h; Vd/f, 551 (385-1173) L; median fluctuation, 89 (79-95)%. Umbilical/maternal metformin plasma concentration ratios were 0.7 (0.4-1.3). Metformin oral clearance (Cl/f) had increased in our patients relative to nonpregnant healthy volunteers or diabetic patients. Therefore, lower plasma metformin concentrations were observed for nondiabetic pregnant women with PCOS. Future studies should be conducted to demonstrate the therapeutic efficacy of metformin during pregnancy. Caution is warranted as umbilical/maternal metformin plasma concentrations ratios of around 0.7 require metformin dosage adjustment.
Resumo:
center dot Pharmacokinetic interactions between albendazole and praziquantel are based on plasma concentrations of the enantiomeric mixture of both drugs with contradictory data, although the antiparasitic activity arises from (-)-(R)-praziquantel and (+)-albendazole sulfoxide. WHAT THIS STUDY ADDS center dot The pharmacokinetic interaction between albendazole and praziquantel is enantioselective. Praziquantel increased the plasma concentrations of (+)-albendazole sulfoxide more than those of (-)-albendazole sulfoxide and the administration of albendazole did not change the kinetic disposition of (+)-(S)-praziquantel, but increased the plasma concentration of (-)-(R)-praziquantel. AIM This study investigated the kinetic disposition, metabolism and enantioselectivity of albendazole (ABZ) and praziquantel (PZQ) administered alone and in combination to healthy volunteers. METHODS A randomized crossover study was carried out in three phases (n = 9), in which some volunteers started in phase 1 (400 mg ABZ), others in phase 2 (1500 mg PZQ), and the remaining volunteers in phase 3 (400 mg ABZ + 1500 mg PZQ). Serial blood samples were collected from 0-48 h after drug administration. Pharmacokinetic parameters were calculated using a monocompartmental model with lag time and were analyzed using the Wilcoxon test; P < 0.05. RESULTS The administration of PZQ increased the plasma concentrations of (+)-ASOX (albendazole sulphoxide) by 264% (AUC 0.99 vs. 2.59 mu g ml-1 h), (-)-ASOX by 358% (0.14 vs. 0.50 mu g ml-1 h) and albendazole sulfone (ASON) by 187% (0.17 vs. 0.32 mu g ml-1 h). The administration of ABZ did not change the kinetic disposition of (+)-(S)-PZQ (-)-(R)-4-OHPZQ or (+)-(S)-4-OHPZQ, but increased the plasma concentration of (-)-(R)-PZQ by 64.77% (AUC 0.52 vs. 0.86 mu g ml-1 h). CONCLUSIONS The pharmacokinetic interaction between ABZ and PZQ in healthy volunteers was demonstrated by the observation of increased plasma concentrations of ASON, both ASOX enantiomers and (-)-(R)-PZQ. Clinically, the combination of ABZ and PZQ may improve the therapeutic efficacy as a consequence of higher concentration of both active drugs. On the other hand, the magnitude of this elevation may represent an increased risk of side effects, requiring, certainly, reduction of the dosage. However, further studies are necessary to evaluate the efficacy and safety of this combination.
Resumo:
To investigate the role of non-protein sulfhydryl groups (NP-SH) and leukocyte adhesion in the protective effect of lipopolysaccharide (LPS) from Escherichia coli against indomethacin-induced gastropathy. Male Wistar rats were divided into four groups: saline, LPS, saline + indomethacin and LPS + indomethacin, with six rats in each group. Rats were pretreated with LPS (300 mu g/kg, by intravenous) or saline. After 6 h, indomethacin was administered (20 mg/kg, by gavage). Three hours after treatments, rats were killed. Macroscopic gastric damage, gastric NP-SH concentration, myeloperoxidase (MPO) activity and mesenteric leukocyte adhesion (intravital microscopy) were assessed. Statistical analysis was performed using one-way analysis of variance followed by the Newman-Keuls test. Statistical significance was set at P < 0.05. LPS reduced the gastric damage, gastric MPO activity and increased gastric NP-SH concentration in indomethacin-induced gastropathy. LPS alone increased gastric NP-SH when compared to saline. Indomethacin increased leukocyte adhesion when compared to the saline, and LPS reduced indomethacin-induced leukocyte adhesion. In addition, LPS alone did not change leukocyte adhesion, when compared to the saline. LPS protective effect against indomethacin-induced gastropathy is mediated by an increase in the NP-SH and a decrease in leukocyte-endothelial adhesion.
Resumo:
Labetalol is clinically available as a mixture of two racemates (four stereoisomers). The stereoisomer (R,R) has as main activity the beta(1)-antagonism and the stereoisomer (S,R) is highly selective for the alpha(1) adrenoceptor and is responsible for most of the alpha-blocker activity. In the present investigation, a method for the analysis of labetalol stereoisomers in human plasma was developed and applied to pharmacokinetic studies. Plasma samples (0.5 ml) were extracted with methyl tert-butyl ether at pH 9.5. The four labetalol stereoisomers were analyzed by LC-MS/MS on a Chirobiotic (R) V column using a mobile phase consisting of methanol, acetic acid, and diethylamine, with a recovery of more than 90% for all four. The quantitation limit was 0.5 ng/ml and linearity was observed at 250 ng/ml plasma for each stereoisomer. Studies of precision and accuracy presented coefficients of variation and percentage inaccuracy of less than 15%, indicating that the method is precise and accurate. The method was applied to the study of the kinetic disposition of labetalol over a period of 12 h after oral administration of a single 100 mg dose to a hypertensive pregnant woman. The clinical study revealed stereoselectivity in the pharmacokinetics of labetalol, with a lower plasma proportion for the active stereoisomers (R,R)-labetalol and (S,R)-labetalol. The stereoselectivity observed after oral administration is due to the hepatic metabolism and the first pass effect, with an AUC((R,R))/AUC((S,S)) ratio of 0.5. Chirality 21:738-744, 2009. (C) 2008 Wiley-Liss, Inc.
Resumo:
A detailed rock magnetic and paleomagnetic study was performed on samples from the Neoproterozoic Itajai Basin in the state of Santa Catarina, Brazil, in order to better constrain the paleogeographic evolution of the Rio de la Plata craton between 600 and 550 Ma. However, rock magnetic properties typical of remagnetized rocks and negative response in the fold test indicated that these rocks carried a secondary chemical remanent magnetization. After detailed AF and thermal cleaning, almost all samples showed a normal polarity characteristic remanent magnetization component close to the present geomagnetic field. The main magnetic carriers are magnetite and hematite, probably of authigenic origin. The mean paleomagnetic pole of the ltajai Basin is located at Plat= -84 degrees, Plong = 97.5 degrees (A95 = 2 degrees) and overlaps the lower Cretaceous segment of the apparent polar wander path of South America, suggesting a cause and effect with the opening of the South Atlantic Ocean. A compilation of remagnetized paleomagnetic poles from South America is presented that highlights the superposition of several large-scale remagnetization events between the Cambrian and the Cretaceous. It is suggested that some paleomagnetic poles used to calibrate the APWP of Gondwana at Precambrian times need to be revised; the indication of remagnetized areas in southern South America may offer some help in the selection of sites for future paleomagnetic investigations in Precambrian rocks. (C) 2011 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Resumo:
We present a technique to build, within a dissipative bosonic network, decoherence-free channels (DFCs): a group of normal-mode oscillators with null effective damping rates. We verify that the states protected within the DFC define the well-known decoherence-free subspaces (DFSs) when mapped back into the natural network oscillators. Therefore, our technique to build protected normal-mode channels turns out to be an alternative way to build DFSs, which offers advantages over the conventional method. It enables the computation of all the network-protected states at once, as well as leading naturally to the concept of the decoherence quasi-free subspace (DQFS), inside which a superposition state is quasi-completely protected against decoherence. The concept of the DQFS, weaker than that of the DFS, may provide a more manageable mechanism to control decoherence. Finally, as an application of the DQFSs, we show how to build them for quasi-perfect state transfer in networks of coupled quantum dissipative oscillators.
Resumo:
We propose a method to compute the entanglement degree E of bipartite systems having dimension 2 x 2 and demonstrate that the partial transposition of density matrix, the Peres criterion, arise as a consequence Of Our method. Differently from other existing measures of entanglement, the one presented here makes possible the derivation of a criterion to verify if an arbitrary bipartite entanglement will suffers sudden death (SD) based only on the initial-state parameters. Our method also makes possible to characterize the SD as a dynamical quantum phase transition, with order parameter epsilon. having a universal critical exponent -1/2. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
In this work we investigate the dynamical Casimir effect in a nonideal cavity by deriving an effective Hamiltonian. We first compute a general expression for the average number of particle creation, applicable for any law of motion of the cavity boundary, under the only restriction of small velocities. We also compute a general expression for the linear entropy of an arbitrary state prepared in a selected mode, also applicable for any law of motion of a slow moving boundary. As an application of our results we have analyzed both the average number of particle creation and linear entropy within a particular oscillatory motion of the cavity boundary. On the basis of these expressions we develop a comprehensive analysis of the resonances in the number of particle creation in the nonideal dynamical Casimir effect. We also demonstrate the occurrence of resonances in the loss of purity of the initial state and estimate the decoherence times associated with these resonances. Since our results were obtained in the framework of the perturbation theory, they are restricted, under resonant conditions, to a short-time approximation. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
In this paper we extend the results presented in (de Ponte, Mizrahi and Moussa 2007 Phys. Rev. A 76 032101) to treat quantitatively the effects of reservoirs at finite temperature in a bosonic dissipative network: a chain of coupled harmonic oscillators whatever its topology, i.e., whichever the way the oscillators are coupled together, the strength of their couplings and their natural frequencies. Starting with the case where distinct reservoirs are considered, each one coupled to a corresponding oscillator, we also analyze the case where a common reservoir is assigned to the whole network. Master equations are derived for both situations and both regimes of weak and strong coupling strengths between the network oscillators. Solutions of these master equations are presented through the normal ordered characteristic function. These solutions are shown to be significantly involved when temperature effects are considered, making difficult the analysis of collective decoherence and dispersion in dissipative bosonic networks. To circumvent these difficulties, we turn to the Wigner distribution function which enables us to present a technique to estimate the decoherence time of network states. Our technique proceeds by computing separately the effects of dispersion and the attenuation of the interference terms of the Wigner function. A detailed analysis of the dispersion mechanism is also presented through the evolution of the Wigner function. The interesting collective dispersion effects are discussed and applied to the analysis of decoherence of a class of network states. Finally, the entropy and the entanglement of a pure bipartite system are discussed.
Resumo:
By considering a network of dissipative quantum harmonic oscillators, we deduce and analyse the optimum topologies which are able to store quantum superposition states, protecting them from decoherence, for the longest period of time. The storage is made dynamically, in that the states to be protected evolve through the network before being retrieved back in the oscillator where they were prepared. The decoherence time during the dynamic storage process is computed and we demonstrate that it is proportional to the number of oscillators in the network for a particular regime of parameters.
Resumo:
In this paper, we demonstrate that the inevitable action of the environment can be substantially weakened when considering appropriate nonstationary quantum systems. Beyond protecting quantum states against decoherence, an oscillating frequency can be engineered to make the system-reservoir coupling almost negligible. Differently from the program for engineering reservoir and similarly to the schemes for dynamical decoupling of open quantum systems, our technique does not require previous knowledge of the state to be protected. However, differently from the previously-reported schemes for dynamical decoupling, our technique does not rely on the availability of tailored external pulses acting faster than the shortest timescale accessible to the reservoir degree of freedom.
Resumo:
In this work, we identify the set of time-dependent pure states building the statistical mixture to which a system, initially in a pure state, is driven by the reservoir. This set of time-dependent pure states, composing what we term a pure basis, are those that diagonalize the reduced density operator of the system. Next, we show that the evolution of the pure-basis states reveals an interesting phenomenon as the system, after decoherence, evolves toward the equilibrium: the spontaneous recoherence of quantum states. Around our defined recoherence time, the statistical mixture associated with a special kind of initial states termed even-symmetric, spontaneously undergoes a recoherence process, by which the initial state of the system emerges from the mixture except for its reduced excitation drained into the reservoir. This phenomenon reveals that the reservoir only shuffle the original information carried out by the initial state of the system instead of erasing it. Moreover, as the spontaneously recohered state occurs only for asymptotic time, we also present a protocol to extract it from the mixture through specific projective measurements. The password to retrieve the original information stems is the knowledge of both the initial state itself and the associated pure basis. A definition of the decoherence time of an N-state superposition is also presented.
Resumo:
In this paper we analyze the double Caldeira-Leggett model: the path integral approach to two interacting dissipative harmonic oscillators. Assuming a general form of the interaction between the oscillators, we consider two different situations: (i) when each oscillator is coupled to its own reservoir, and (ii) when both oscillators are coupled to a common reservoir. After deriving and solving the master equation for each case, we analyze the decoherence process of particular entanglements in the positional space of both oscillators. To analyze the decoherence mechanism we have derived a general decay function, for the off-diagonal peaks of the density matrix, which applies both to common and separate reservoirs. We have also identified the expected interaction between the two dissipative oscillators induced by their common reservoir. Such a reservoir-induced interaction, which gives rise to interesting collective damping effects, such as the emergence of relaxation- and decoherence-free subspaces, is shown to be blurred by the high-temperature regime considered in this study. However, we find that different interactions between the dissipative oscillators, described by rotating or counter-rotating terms, result in different decay rates for the interference terms of the density matrix. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this paper we propose a scheme for quasi-perfect state transfer in a network of dissipative harmonic oscillators. We consider ideal sender and receiver oscillators connected by a chain of nonideal transmitter oscillators coupled by nearest-neighbour resonances. From the algebraic properties of the dynamical quantities describing the evolution of the network state, we derive a criterion, fixing the coupling strengths between all the oscillators, apart from their natural frequencies, enabling perfect state transfer in the particular case of ideal transmitter oscillators. Our criterion provides an easily manipulated formula enabling perfect state transfer in the special case where the network nonidealities are disregarded. We also extend such a criterion to dissipative networks where the fidelity of the transferred state decreases due to the loss mechanisms. To circumvent almost completely the adverse effect of decoherence, we propose a protocol to achieve quasi-perfect state transfer in nonideal networks. By adjusting the common frequency of the sender and the receiver oscillators to be out of resonance with that of the transmitters, we demonstrate that the sender`s state tunnels to the receiver oscillator by virtually exciting the nonideal transmitter chain. This virtual process makes negligible the decay rate associated with the transmitter line at the expense of delaying the time interval for the state transfer process. Apart from our analytical results, numerical computations are presented to illustrate our protocol.