21 resultados para Plastic Injection Molding
Resumo:
Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)
Resumo:
Coupling a liquid core waveguide cell to a sequential injection chromatograph improved the detection limits for determination of triazine herbicides without compromising peak resolution. Separation of simazine, atrazine, and propazine was achieved in water samples by a 25mm long C18 monolithic column. Detection was made at 238nm using a type II LCW (silica capillary coated with Teflon (R) AF2400) cell with 100cm of optical path length. Detection limits for simazine, atrazine, and propazine were 2.3, 1.9, and 4.5 mu g L-1, respectively. Reduced analysis time and low solvent consumption are other remarkable features of the proposed method.
Resumo:
This paper describes the optimization and use of a Sequential Injection Analysis (SIA) procedure for ammonium determination in waters. Response Surface Methodology (RSM) was used as a tool for optimization of a procedure based on the modified Berthelot reaction. The SIA system was designed to (i) prepare the reaction media by injecting an air-segmented zone containing the reagents in a mixing chamber, (ii) to aspirate the mixture back to the holding coil after homogenization, (iii) drive it to a thermostated reaction coil, where the flow is stopped for a previously established time, and (iv) to pump the mixture toward the detector flow cell for the spectrophotometric measurements. Using a 100 mu mol L(-1) ammonium solution, the following factors were considered for optimization: reaction temperature (25 - 45 degrees C), reaction time (30 - 90 s), hypochlorite concentration (20 - 40 mmol L(-1)) nitroprusside concentration (10 - 40 mmol L(-1)) and salicylate concentration (0.1 - 0.3 mol L(-1)). The proposed system fed the statistical program with absorbance data for fast construction of response surface plots. After optimization of the method, figures of merit were evaluated, as well as the ammonium concentration in some water samples. No evidence of statistical difference was observed in the results obtained by the proposed method in comparison to those obtained by a reference method based on the phenol reaction. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Direct analysis, with minimal sample pretreatment, of antidepressant drugs, fluoxetine, imipramine, desipramine, amitriptyline, and nortriptyline in biofluids was developed with a total run time of 8 min. The setup consists of two HPLC pumps, injection valve, capillary RAM-ADS-C18 pre-column and a capillary analytical C 18 column connected by means of a six-port valve in backflush mode. Detection was performed with ESI-MS/MS and only 1 mu m of sample was injected. Validation was adequately carried out using FLU-d(5) as internal standard. Calibration curves were constructed under a linear range of 1-250 ng mL(-1) in plasma, being the limit of quantification (LOQ), determined as 1 ng mL(-1), for all the analytes. With the described approach it was possible to reach a quantified mass sensitivity of 0.3 pg for each analyte (equivalent to 1.1-1.3 fmol), translating to a lower sample consumption (in the order of 103 less sample than using conventional methods). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A column switching LC method is presented for the analysis of fluoxetine (FLU) and norfluoxetine (NFLU) by direct injection of human plasma using a lab-made restricted access media (RAM) column. A RAM-BSA-octadecyl silica (C-18) column (40 min x 4.6 mm, 10 mu m) is evaluated in both backflush and foreflush elution modes and coupled with a C-18 lab-made (50 mm x 4.6 mm, 3 pm) analytical column in order to perform online sample preparation. Direct injection of 100 mu L, of plasma samples is possible with the developed approach. In addition, reduction of sample handling is obtained when compared with traditional liquid-liquid extraction (LLE) and SPE. The total analysis time is around 20 min. A LOQ of 15 ng/mL is achieved in a concentration range of 15-500 ng/mL, allowing the therapeutic drug monitoring of clinical samples. The precision values achieved are lower than 15% for all the evaluated points with adequate recovery and accuracy. Furthermore, no matrix interferences are found in the analysis and the proposed method shows to be an adequate alternative for analysis of FLU in plasma.
Resumo:
This paper compares the analytical performance of microchannels fabricated in PDMS, glass, and polyester-toner for electrophoretic separations. Glass and PDMS chips were fabricated using well-established photolithographic and replica-molding procedures, respectively. PDMS channels were sealed against three different types of materials: native PDMS, plasma-oxidized PDMS, and glass. Polyester-toner chips were micromachined by a direct-printing process using an office laser printer. All microchannels were fabricated with similar dimensions according to the limitations of the direct-printing process (width/depth 150 mu m/12 mu m). LIF was employed for detection to rule out any losses in separation efficiency due to the detector configuration. Two fluorescent dyes, coumarin and fluorescein, were used as model analytes. Devices were evaluated for the following parameters related to electrophoretic separations: EOF, heat dissipation, injection reproducibility, separation efficiency, and adsorption to channel wall.