88 resultados para Planets and satellites: dynamical evolution and stability
Resumo:
Aims. We report the discovery of CoRoT-8b, a dense small Saturn-class exoplanet that orbits a K1 dwarf in 6.2 days, and we derive its orbital parameters, mass, and radius. Methods. We analyzed two complementary data sets: the photometric transit curve of CoRoT-8b as measured by CoRoT and the radial velocity curve of CoRoT-8 as measured by the HARPS spectrometer**. Results. We find that CoRoT-8b is on a circular orbit with a semi-major axis of 0.063 +/- 0.001 AU. It has a radius of 0.57 +/- 0.02 R(J), a mass of 0.22 +/- 0.03 M(J), and therefore a mean density of 1.6 +/- 0.1 g cm(-3). Conclusions. With 67% of the size of Saturn and 72% of its mass, CoRoT-8b has a density comparable to that of Neptune (1.76 g cm(-3)). We estimate its content in heavy elements to be 47-63 M(circle plus), and the mass of its hydrogen-helium envelope to be 7-23 M(circle plus). At 0.063 AU, the thermal loss of hydrogen of CoRoT-8b should be no more than similar to 0.1% over an assumed integrated lifetime of 3 Ga.
Resumo:
Based on our previous work, we investigate here the effects on the wind and magnetospheric structures of weak-lined T Tauri stars due to a misalignment between the axis of rotation of the star and its magnetic dipole moment vector. In such a configuration, the system loses the axisymmetry presented in the aligned case, requiring a fully three-dimensional (3D) approach. We perform 3D numerical magnetohydrodynamic simulations of stellar winds and study the effects caused by different model parameters, namely the misalignment angle theta(t), the stellar period of rotation, the plasma-beta, and the heating index.. Our simulations take into account the interplay between the wind and the stellar magnetic field during the time evolution. The system reaches a periodic behavior with the same rotational period of the star. We show that the magnetic field lines present an oscillatory pattern. Furthermore, we obtain that by increasing theta(t), the wind velocity increases, especially in the case of strong magnetic field and relatively rapid stellar rotation. Our 3D, time-dependent wind models allow us to study the interaction of a magnetized wind with a magnetized extrasolar planet. Such interaction gives rise to reconnection, generating electrons that propagate along the planet`s magnetic field lines and produce electron cyclotron radiation at radio wavelengths. The power released in the interaction depends on the planet`s magnetic field intensity, its orbital radius, and on the stellar wind local characteristics. We find that a close-in Jupiter-like planet orbiting at 0.05 AU presents a radio power that is similar to 5 orders of magnitude larger than the one observed in Jupiter, which suggests that the stellar wind from a young star has the potential to generate strong planetary radio emission that could be detected in the near future with LOFAR. This radio power varies according to the phase of rotation of the star. For three selected simulations, we find a variation of the radio power of a factor 1.3-3.7, depending on theta(t). Moreover, we extend the investigation done in Vidotto et al. and analyze whether winds from misaligned stellar magnetospheres could cause a significant effect on planetary migration. Compared to the aligned case, we show that the timescale tau(w) for an appreciable radial motion of the planet is shorter for larger misalignment angles. While for the aligned case tau(w) similar or equal to 100 Myr, for a stellar magnetosphere tilted by theta(t) = 30 degrees, tau(w) ranges from similar to 40 to 70 Myr for a planet located at a radius of 0.05 AU. Further reduction on tau(w) might occur for even larger misalignment angles and/or different wind parameters.
Resumo:
We analyze the stability properties of equilibrium solutions and periodicity of orbits in a two-dimensional dynamical system whose orbits mimic the evolution of the price of an asset and the excess demand for that asset. The construction of the system is grounded upon a heterogeneous interacting agent model for a single risky asset market. An advantage of this construction procedure is that the resulting dynamical system becomes a macroscopic market model which mirrors the market quantities and qualities that would typically be taken into account solely at the microscopic level of modeling. The system`s parameters correspond to: (a) the proportion of speculators in a market; (b) the traders` speculative trend; (c) the degree of heterogeneity of idiosyncratic evaluations of the market agents with respect to the asset`s fundamental value; and (d) the strength of the feedback of the population excess demand on the asset price update increment. This correspondence allows us to employ our results in order to infer plausible causes for the emergence of price and demand fluctuations in a real asset market. The employment of dynamical systems for studying evolution of stochastic models of socio-economic phenomena is quite usual in the area of heterogeneous interacting agent models. However, in the vast majority of the cases present in the literature, these dynamical systems are one-dimensional. Our work is among the few in the area that construct and study analytically a two-dimensional dynamical system and apply it for explanation of socio-economic phenomena.
Resumo:
A gordura vegetal parcialmente hidrogenada tem sido utilizada na aromatização de snacks. Entretanto, o risco à saúde ocasionado pelo elevado consumo de ácidos graxos saturados e trans (AGT) vem estimulando o desenvolvimento de abordagens alternativas a essa gordura. Substituímos a gordura vegetal parcialmente hidrogenada (F) por óleo de canola (O) na aromatização de snacks. Snacks com diferentes níveis de O foram produzidos, embalados e armazenados em temperatura ambiente durante vinte semanas. Monitoramos o perfil de ácidos graxos, o teor de substâncias reativas ao TBA (TBARS), a força de cisalhamento e a aceitabilidade sensorial. A substituição total reduziu o teor de ácidos graxos saturados em 72,5 por cento, em comparação aos snacks comerciais. Os snacks eram inicialmente isentos de AGT, porém, após 8 semanas, esses compostos surgiram, havendo aumento gradual durante o período de armazenamento. Entretanto, estes níveis mantiveram-se inferiores aos observados em snacks comercializados. Também foram observados baixos teores de TBARS e estabilidade da força de cisalhamento. Snacks aromatizados com F ou O foram igualmente bem aceitos durante as vinte semanas de armazenamento. É possível desenvolver snacks com teores reduzidos de ácidos graxos saturados e trans, estáveis durante o armazenamento, mantendo a elevada aceitabilidade sensorial típica deste tipo de produto
Resumo:
Context. Two main scenarios for the formation of the Galactic bulge are invoked, the first one through gravitational collapse or hierarchical merging of subclumps, the second through secular evolution of the Galactic disc. Aims. We aim to constrain the formation of the Galactic bulge through studies of the correlation between kinematics and metallicities in Baade's Window (l = 1 degrees, b = -4 degrees) and two other fields along the bulge minor axis (l = 0 degrees, b = -6 degrees and b = -12 degrees). Methods. We combine the radial velocity and the [Fe/H] measurements obtained with FLAMES/GIRAFFE at the VLT with a spectral resolution of R = 20 000, plus for the Baade's Window field the OGLE-II proper motions, and compare these with published N-body simulations of the Galactic bulge. Results. We confirm the presence of two distinct populations in Baade's Window found in Hill et al. (2010, A&A, submitted): the metal-rich population presents bar-like kinematics while the metal-poor population shows kinematics corresponding to an old spheroid or a thick disc. In this context the metallicity gradient along the bulge minor axis observed by Zoccali et al. (2008, A&A, 486, 177), visible also in the kinematics, can be related to a varying mix of these two populations as one moves away from the Galactic plane, alleviating the apparent contradiction between the kinematic evidence of a bar and the existence of a metallicity gradient. Conclusions. We show evidence that the two main scenarios for the bulge formation co-exist within the Milky Way bulge.
Resumo:
In this paper we establish a method to obtain the stability of periodic travelling-wave solutions for equations of Korteweg-de Vries-type u(t) + u(p)u(x) - Mu(x) = 0, with M being a general pseudodifferential operator and where p >= 1 is an integer. Our approach uses the theory of totally positive operators, the Poisson summation theorem, and the theory of Jacobi elliptic functions. In particular we obtain the stability of a family of periodic travelling waves solutions for the Benjamin Ono equation. The present technique gives a new way to obtain the existence and stability of cnoidal and dnoidal waves solutions associated with the Korteweg-de Vries and modified Korteweg-de Vries equations, respectively. The theory has prospects for the study of periodic travelling-wave solutions of other partial differential equations.
Resumo:
The behavior of stability regions of nonlinear autonomous dynamical systems subjected to parameter variation is studied in this paper. In particular, the behavior of stability regions and stability boundaries when the system undergoes a type-zero sadle-node bifurcation on the stability boundary is investigated in this paper. It is shown that the stability regions suffer drastic changes with parameter variation if type-zero saddle-node bifurcations occur on the stability boundary. A complete characterization of these changes in the neighborhood of a type-zero saddle-node bifurcation value is presented in this paper. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Rutin is employed as antioxidant and to prevent the capillary fragility and, when incorporated in cosmetic emulsions, it must target the action site. In vitro cutaneous penetration studies through human skin is the ideal situation, however, there are difficulties to obtain and to maintain this tissue viability. Among the membrane models, shed snake skin presents itself as pure stratum corneum, providing barrier function similar to human and it is obtained without the animal sacrifice. The objectives of this research were the development and stability evaluation of a cosmetic emulsion containing rutin and propylene glycol (penetration enhancer) and the evaluation or rutin in vitro cutaneous penetration and retention from the emulsion, employing an alternative model biomembrane. Emulsion was developed with rutin and propylene glycol, both at 5.0% w/w. Active substance presented on the formulation was quantified by a validated spectrophotometric method at 361.0 nm. Rutin Rutin cutaneous penetration and retention was performed in vertical diffusion cells with shed snake skin of Crotalus durissus, as alternative model biomembrane, and distilled water and ethanol 99.5% (1:1), as receptor fluid. The experiment was conducted for six hours, at 37.0 +/- 0.5 degrees C with constant stirring of 300 rpm. Spectrophotometry at 410.0 nm, previously validated, determined the active substance after cutaneous penetration/ retention. Emulsion did not promote rutin cutaneous penetration through C. durissus skin, retaining 0.931 +/- 0.0391 mu g rutin/mg shed snake skin. The referred formulation was chemically stable for 30 days after stored at 25.0 +/- 2.0 degrees C, 5.0 +/- 0.5 degrees C and 45.0 +/- 0.5 degrees C. In conclusion, it has not been verified the active cutaneous penetration through the model biomembrane, but only its retention on the Crotalus durissus stratum corneum, condition considered stable for 30 days.
Resumo:
P>The aim of this research was to study spray drying as potential action to protect chlorophyllide from environmental conditions for shelf-life extension and characterisation of the powders. Six formulations were prepared with 7.5 and 10 g of carrier agents [gum Arabic (GA), maltodextrin (MA) and soybean protein isolate (SPI)]/100 mL of chlorophyllide solutions. The powders were evaluated for morphological characteristics (SEM), particle size, water activity, moisture, density, hygroscopicity, cold water solubility, sorption isotherms, colour and stability, during 90 days. All the powders were highly soluble, with solubility values around 97%. A significant lower hygroscopicity was observed for GA powders, whilst the lower X(m) values obtained by GAB equation fitting of the sorption isotherms was observed for the 7.5 g MA/100 mL samples. All formulations, but the 1 (7.5 g SPI/100 mL of chlorophyllide), provided excellent stability to the chlorophyllide during 90 days of storage even at room temperature.
Resumo:
We study the stability regions and families of periodic orbits of two planets locked in a co-orbital configuration. We consider different ratios of planetary masses and orbital eccentricities; we also assume that both planets share the same orbital plane. Initially, we perform numerical simulations over a grid of osculating initial conditions to map the regions of stable/chaotic motion and identify equilibrium solutions. These results are later analysed in more detail using a semi-analytical model. Apart from the well-known quasi-satellite orbits and the classical equilibrium Lagrangian points L(4) and L(5), we also find a new regime of asymmetric periodic solutions. For low eccentricities these are located at (delta lambda, delta pi) = (+/- 60 degrees, -/+ 120 degrees), where delta lambda is the difference in mean longitudes and delta pi is the difference in longitudes of pericentre. The position of these anti-Lagrangian solutions changes with the mass ratio and the orbital eccentricities and are found for eccentricities as high as similar to 0.7. Finally, we also applied a slow mass variation to one of the planets and analysed its effect on an initially asymmetric periodic orbit. We found that the resonant solution is preserved as long as the mass variation is adiabatic, with practically no change in the equilibrium values of the angles.
Resumo:
By means of numerical simulations, we investigate magnetized stellar winds of pre-main-sequence stars. In particular, we analyze under which circumstances these stars will present elongated magnetic features (e.g., helmet streamers, slingshot prominences, etc). We focus on weak-lined T Tauri stars, as the presence of the tenuous accretion disk is not expected to have strong influence on the structure of the stellar wind. We show that the plasma-beta parameter (the ratio of thermal to magnetic energy densities) is a decisive factor in defining the magnetic configuration of the stellar wind. Using initial parameters within the observed range for these stars, we show that the coronal magnetic field configuration can vary between a dipole-like configuration and a configuration with strong collimated polar lines and closed streamers at the equator (multicomponent configuration for the magnetic field). We show that elongated magnetic features will only be present if the plasma-beta parameter at the coronal base is beta(0) << 1. Using our self-consistent three-dimensional magnetohydrodynamics model, we estimate for these stellar winds the timescale of planet migration due to drag forces exerted by the stellar wind on a hot-Jupiter. In contrast to the findings of Lovelace et al., who estimated such timescales using the Weber and Davis model, our model suggests that the stellar wind of these multicomponent coronae are not expected to have significant influence on hot-Jupiters migration. Further simulations are necessary to investigate this result under more intense surface magnetic field strengths (similar to 2-3 kG) and higher coronal base densities, as well as in a tilted stellar magnetosphere.
Resumo:
Copper and gold nanowires under tension evolve to form linear atomic chains (LACs), and the study and understanding of this evolution is an important subject for the development of nanocontacts. Here we study the differences and similarities between copper and gold nanowires (NWs) under stress along the [111] crystallographic direction until their rupture using tight-binding molecular dynamics. In both metals, the first significant rearrangement occurs due to one inside atom that goes to the NW` surface. In an attempt to better understand this effect, for both metals we also consider hollow NW`s where the inside atoms were excluded after the initial relaxation to create single-wall NW`s (SWNWs). The dynamical evolution of these SWNWs provides insight on the formation of the constriction that evolves to form LACs. Studying the calculated forces supported by the NW`s we show that SWNWs can sustain larger forces before the first major rearrangement in the copper and gold when compared to the original NW`s.
Resumo:
The septins are a family of conserved proteins involved in cytokinesis and cortical organization. An increasing amount of data implicates different septins in diverse pathological conditions including neurodegenerative disorders, neoplasia and infections. Human SEPT4 is a member of this family and its tissue-specific ectopic expression profile in colorectal and urologic cancer makes it a useful diagnostic biomarker. Thermal unfolding of the GTPase domain of SEPT4 (SEPT4-G) revealed an unfolding intermediate which rapidly aggregates into amyloid-like fibers under physiological conditions. In this study, we examined the effects of protein concentration, pH and metals ions on the aggregation process of recombinant SEPT4-G using a series of biophysical techniques, which were also employed to study chemical unfolding and stability. Divalent metal ions caused significant acceleration to the rate of SEPT4-G aggregation. Urea induced unfolding was shown to proceed via the formation of a partially unfolded intermediate state which unfolds further at higher urea concentrations. The intermediate is a compact dimer which is unable to bind GTR At 1 M urea concentration, the intermediate state was plagued by irreversible aggregation at temperatures above 30 degrees C. However, higher urea concentration resulted in a marked decay of the aggregation, indicating that the partially folded structures may be necessary for the formation of these aggregates. The results presented here are consistent with the recently determined crystal structure of human septins and shed light on the aggregation properties of SEPT4 pertinent to its involvement in neurodegenerative disease. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper demonstrates the application of thermal analysis in compatibility and stability studies between it ACE inhibitor (enalapril maleate) and excipients. The results have helped to elucidate the reason of a stability problem observed (luring the storage of enalapril maleate tablets. Incompatibility between enalapril maleate and colloidal silicon dioxide was detected. Besides, it was confirmed that the reaction between enalapril maleate and NaHCO3 increases the thermal stability of the drug. This Study Supports the importance of using thermoanalytical methods in the development of pharmaceuticals.
Resumo:
Context. Star activity makes the mass determination of CoRoT-7b and CoRoT 7c uncertain. Investigators of the CoRoT team proposed several solutions, but all but one of them are larger than the initial determinations of 4.8 +/- 0.8 M(Earth) for CoRoT-7b and 8.4 +/- 0.9 M(Earth) for CoRoT 7c. Aims. This investigation uses the excellent HARPS radial velocity measurements of CoRoT-7 to redetermine the planet masses and to explore techniques for determining mass and orbital elements of planets discovered around active stars when the relative variation in the radial velocity due to the star activity cannot be considered as just noise and can exceed the variation due to the planets. Methods. The main technique used here is a self-consistent version of the high-pass filter used by Queloz et al. (2009, A&A, 506, 303) in the first mass determination of CoRoT-7b and CoRoT-7c. The results are compared to those given by two alternative techniques: (1) the approach proposed by Hatzes et al. (2010, A&A, 520, A93) using only those nights in which two or three observations were done; (2) a pure Fourier analysis. In all cases, the eccentricities are taken equal to zero as indicated by the study of the tidal evolution of the system. The periods are also kept fixed at the values given by Queloz et al. Only the observations done in the time interval BJD 2 454 847-873 are used because they include many nights with multiple observations; otherwise, it is not possible to separate the effects of the rotation fourth harmonic (5.91 d = P(rot)/4) from the alias of the orbital period of CoRoT-7b (0.853585 d). Results. The results of the various approaches are combined to give planet mass values 8.0 +/- 1.2 M(Earth) for CoRoT-7b and 13.6 +/- 1.4 M(Earth) for CoRoT 7c. An estimation of the variation of the radial velocity of the star due to its activity is also given. Conclusions. The results obtained with three different approaches agree to give higher masses than those in previous determinations. From the existing internal structure models they indicate that CoRoT-7b is a much denser super-Earth. The bulk density is 11 +/- 3.5 g cm(-3), so CoRoT-7b may be rocky with a large iron core.