24 resultados para Peak Expiratory Flow Rate


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Previous studies reported alterations in salivary flow rate and biochemical parameters of saliva in cerebral palsy (CP) individuals; however, none of these considered the type of neuromotor abnormality among CP individuals, thus it remains unclear whether the different anatomical and extended regions of the brain lesions responsible for the neurological damage in CP might include disruption of the regulatory mechanism of saliva secretion as part of the encephalopathy. The aim of this study was to evaluate salivary flow rate, pH and buffer capacity in saliva of individuals with CP, aged 3-16 years, with spastic neuromotor abnormality type and clinical patterns of involvement. Methods: Sixty-seven individuals with CP spasticity movement disorder, were divided in two groups according to age (3-8- and 9-16-years-old) and compared with 35 sibling volunteers with no neurological damage, divided in two groups according to age (3-8- and 9-16-years-old). Whole saliva was collected under slight suction and pH and buffer capacity were determined using a digital pHmeter. Buffer capacity was measured by titration using 0.01N HCL, and flow rate was calculated in ml/min. Results: In both age groups studied, whole saliva flow rate, pH and buffer capacity were significantly lower in the spastic CP group (P < 0.05). The clinical patterns of involvement did not influence the studied parameters. Conclusion: These findings show that individuals with spastic cerebral palsy present lower salivary flow rate, pH and buffer capacity that can increase the risk of oral disease in this population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The analytical determination of atmospheric pollutants still presents challenges due to the low-level concentrations (frequently in the mu g m(-3) range) and their variations with sampling site and time In this work a capillary membrane diffusion scrubber (CMDS) was scaled down to match with capillary electrophoresis (CE) a quick separation technique that requires nothing more than some nanoliters of sample and when combined with capacitively coupled contactless conductometric detection (C(4)D) is particularly favorable for ionic species that do not absorb in the UV-vis region like the target analytes formaldehyde formic acid acetic acid and ammonium The CMDS was coaxially assembled inside a PTFE tube and fed with acceptor phase (deionized water for species with a high Henry s constant such as formaldehyde and carboxylic acids or acidic solution for ammonia sampling with equilibrium displacement to the non-volatile ammonium ion) at a low flow rate (8 3 nLs(-1)) while the sample was aspirated through the annular gap of the concentric tubes at 25 mLs(-1) A second unit in all similar to the CMDS was operated as a capillary membrane diffusion emitter (CMDE) generating a gas flow with know concentrations of ammonia for the evaluation of the CMDS The fluids of the system were driven with inexpensive aquarium air pumps and the collected samples were stored in vials cooled by a Peltier element Complete protocols were developed for the analysis in air of NH(3) CH(3)COOH HCOOH and with a derivatization setup CH(2)O by associating the CMDS collection with the determination by CE-C(4)D The ammonia concentrations obtained by electrophoresis were checked against the reference spectrophotometric method based on Berthelot s reaction Sensitivity enhancements of this reference method were achieved by using a modified Berthelot reaction solenoid micro-pumps for liquid propulsion and a long optical path cell based on a liquid core waveguide (LCW) All techniques and methods of this work are in line with the green analytical chemistry trends (C) 2010 Elsevier B V All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concept of sequential injection chromatography (SIC) was exploited to automate the fluorimetric determination of amino acids after pre-column derivatization with ophthaldialdehyde (OPA) in presence of 2-mercaptoethanol (2MCE) using a reverse phase monolithic C(18) stationary phase. The method is low-priced and based on five steps of isocratic elutions. The first step employs the mixture methanol: tetrahydrofuran: 10 mmol L(-1) phosphate buffer (pH 7.2) at the volumetric ratio of 8:1:91; the other steps use methanol: 10 mmol L-1 phosphate buffer (pH 7.2) at volumetric ratios of 20:80, 35:65, SO:SO and 65:35. At a flow rate of 10 mu L s(-1) a 25 mm long-column was able to separate aspartic acid (Asp), glutamic acid (Glu), asparagine (Asn), serine (Ser), glutamine (Gln), glycine (Gly), threonine (Thr), citruline (Ctr), arginine (Arg), alanine (Ala), tyrosine (Tyr), phenylalanine (Phe), ornithine (Orn) and lysine (Lys) with resolution >1.2 as well as methionine (Met) and valine (Val) with resolution of 0.6. Under these conditions isoleucine (Ile) and leucine (Leu) co-eluted. The entire cycle of amino acids derivatization, chromatographic separation and column conditioning at the end of separation lasted 25 min. At a flow rate of 40 mu L s(-1) such time was reduced to 10 min at the cost of resolution worsening for the pairs Ctr/Arg and Orn/Lys. The detection limits varied from 0.092 mu mol L(-1) for Tyr to 0.51 mu mol L(-1) for Orn. The method was successfully applied to the determination of intracellular free amino acids in the green alga Tetraselmis gracilis during a period of seven days of cultivation. Samples spiked with known amounts of amino acids resulted in recoveries between 94 and 112%. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dynamic atmosphere generator with a naphthalene emission source has been constructed and used for the development and evaluation of a bioluminescence sensor based on the bacteria Pseudomonas fluorescens HK44 immobilized in 2% agar gel (101 cell mL(-1)) placed in sampling tubes. A steady naphthalene emission rate (around 7.3 nmol min(-1) at 27 degrees C and 7.4 mLmin(-1) of purified air) was obtained by covering the diffusion unit containing solid naphthalene with a PTFE filter membrane. The time elapsed from gelation of the agar matrix to analyte exposure (""maturation time"") was found relevant for the bioluminescence assays, being most favorable between 1.5 and 3 h. The maximum light emission, observed after 80 min, is dependent on the analyte concentration and the exposure time (evaluated between 5 and 20 min), but not on the flow rate of naphthalene in the sampling tube, over the range of 1.8-7.4 nmol min(-1). A good linear response was obtained between 50 and 260 nmol L-1 with a limit of detection estimated in 20 nmol L-1 far below the recommended threshold limit value for naphthalene in air. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compared to other volatile carbonylic compounds present in outdoor air, formaldehyde (CH2O) is the most toxic, deserving more attention in terms of indoor and outdoor air quality legislation and control. The analytical determination of CH2O in air still presents challenges due to the low-level concentration (in the sub-ppb range) and its variation with sampling site and time. Of the many available analytical methods for carbonylic compounds, the most widespread one is the time consuming collection in cartridges impregnated with 2,4-dinitrophenylhydrazine followed by the analysis of the formed hydrazones by HPLC. The present work proposes the use of polypropylene hollow porous capillary fibers to achieve efficient CH2O collection. The Oxyphan (R) fiber (designed for blood oxygenation) was chosen for this purpose because it presents good mechanical resistance, high density of very fine pores and high ratio of collection area to volume of the acceptor fluid in the tube, all favorable for the development of air sampling apparatus. The collector device consists of a Teflon pipe inside of which a bundle of polypropylene microporous capillary membranes was introduced. While the acceptor passes at a low flow rate through the capillaries, the sampled air circulates around the fibers, impelled by a low flow membrane pump (of the type used for aquariums ventilation). The coupling of this sampling technique with the selective and quantitative determination of CH2O, in the form of hydroxymethanesulfonate (HMS) after derivatization with HSO3-, by capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-(CD)-D-4) enabled the development of a complete analytical protocol for the CH2O evaluation in air. (C) 2008 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the development and evaluation of a sequential injection method to automate the determination of methyl parathion by square wave adsorptive cathodic stripping voltammetry exploiting the concept of monosegmented flow analysis to perform in-line sample conditioning and standard addition. Accumulation and stripping steps are made in the sample medium conditioned with 40 mmol L-1 Britton-Robinson buffer (pH 10) in 0.25 mol L-1 NaNO3. The homogenized mixture is injected at a flow rate of 10 mu Ls(-1) toward the flow cell, which is adapted to the capillary of a hanging drop mercury electrode. After a suitable deposition time, the flow is stopped and the potential is scanned from -0.3 to -1.0 V versus Ag/AgCl at frequency of 250 Hz and pulse height of 25 mV The linear dynamic range is observed for methyl parathion concentrations between 0.010 and 0.50 mgL(-1), with detection and quantification limits of 2 and 7 mu gL(-1), respectively. The sampling throughput is 25 h(-1) if the in line standard addition and sample conditioning protocols are followed, but this frequency can be increased up to 61 h(-1) if the sample is conditioned off-line and quantified using an external calibration curve. The method was applied for determination of methyl parathion in spiked water samples and the accuracy was evaluated either by comparison to high performance liquid chromatography with UV detection, or by the recovery percentages. Although no evidences of statistically significant differences were observed between the expected and obtained concentrations, because of the susceptibility of the method to interference by other pesticides (e.g., parathion, dichlorvos) and natural organic matter (e.g., fulvic and humic acids), isolation of the analyte may be required when more complex sample matrices are encountered. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report in this paper the occurrence of potential oscillations in a proton exchange membrane fuel cell (PEMFC) with a Pd-Pt/C anode, fed with H(2)/100 ppm CO, and operated at 30 degrees C. We demonstrate that the use of Pd-Pt/C anode enables the emergence of dynamic instabilities in a PEMFC. Oscillations are characterized by the presence of very high oscillation amplitude, ca. 0.8 V. which is almost twice that observed in a PEMFC with a Pt-Ru/C anode under similar conditions. The effects of the H(2)/CO flow rate and cell current density on the oscillatory dynamics were investigated and the mechanism rationalized in terms of the CO oxidation and adsorption processes. We also discuss the fundamental aspects concerning the operation of a PEMFC under oscillatory regime in terms of the benefit resulting from the higher average power output. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the results concerning the degradation of the pesticide carbaryl comparing two methods: electrochemical (EC) and photo-assisted electrochemical (PAEC). The experimental variables of applied current density, electrolyte flow-rate and initial carbaryl concentration were investigated. The results demonstrate that the electrochemical degradation of carbaryl was greatly enhanced when simultaneous UV light was applied. The greatest difference between the PAEC and EC method was apparent when lower current densities were applied. The extent of COD removal was much enhanced for the combined method, independent of the applied current density. It should be noted that the complete removal of carbaryl was achieved with out the need to add NaCl to the reaction mixture, avoiding the risk of chlorinated organic species formation. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a degradation study of the pesticide atrazine using photo-assisted electrochemical methods at a dimensionally stable anode (DSA (R)) of nominal composition Ti/Ru(0.3)Ti(0.7)O(2) in a prototype reactor. The effects of current density, electrolyte flow-rate, as well as the use of different atrazine concentrations are reported. The results indicate that the energy consumption is substantially reduced for the combined photochemical and electrochemical processes when compared to the isolated systems. It is observed that complete atrazine removal is achieved at low current densities when using the combined method, thus reducing the energy required to operate the electrochemical system. The results also include the investigation of the phytotoxicity of the treated solutions.