30 resultados para Pasquier, Étienne, 1529-1615.
Resumo:
A three-phase hollow-fiber liquid-phase microextraction method for the analysis of rosiglitazone and its metabolites N-desmethyl rosiglitazone and p-hydroxy rosiglitazone in microsomal preparations is described for the first time. The drug and metabolites HPLC determination was carried out using an X-Terra RP-18 column, at 22 degrees C. The mobile phase was composed of water, acetonitrile and acetic acid (85:15:0.5, v/v/v) and the detection was performed at 245 nm. The hollow-fiber liquid-phase microextraction procedure was optimized using multifactorial experiments and the following optimal condition was established: sample agitation at 1750 rpm, extraction for 30 min, hydrochloric acid 0.01 mol/L as acceptor phase, 1-octanol as organic phase, and donor phase pH adjustment to 8.0. The recovery rates, obtained by using 1 mL of microsomal preparation, were 47-70%. The method presented LOQs of 50 ng/mL and it was linear over the concentration range of 50-6000 ng/mL, with correlation coefficients (r) higher than 0.9960, for all analytes. The validated method was employed to study the in vitro biotransformation of rosiglitazone using rat liver microsomal fraction.
Resumo:
A selective and reproducible off-line solid-phase microextraction procedure was developed for the simultaneous enantioselective determination of mirtazapine (MRT), demethylmirtazapine and 8-hydroxymirtazapine in human urine. CE was used for optimization of the extraction procedure whereas LC-MS was used for method validation and application. The influence of important factors in the solid-phase microextraction efficiency is discussed, such as the fiber coatings, extraction time, pH, ionic strength, temperature and desorption time. Before extraction, human urine samples were submitted to enzymatic hydrolysis at 37 degrees C for 16 h. Then, the enzyme was precipitated with trichloroacetic acid and the pH was adjusted to 8 with 1 mol/L pH 11 phosphate buffer solution. In the extraction, the analytes were transferred from the aqueous solution to the polydimethylsiloxane-divinylbenzene fiber coating and then desorbed in methanol. The mean recoveries were 5.4, 1.7 and 1.0% for MRT, demethylmirtazapine and 8-hydroxymirtazapine enantiomers, respectively. The method was linear over the concentration range of 62-1250 ng/mL. The within-day and between-day assay precision and accuracy were lower than 15%. The method was successfully employed in a preliminary cumulative urinary excretion study after administration of racemic MRT to a healthy volunteer.
Resumo:
Rhizopus microsporus var. rhizopodiformis produced high levels of alpha-amylase and glucoamylase under solid state fermentation, with several agricultural residues, such as wheat bran, cassava flour, sugar cane bagasse, rice straw, corncob and crushed corncob as carbon sources. These materials were humidified with distilled water, tap water, or saline solutions-Segato Rizzatti (SR), Khanna or Vogel. The best substrate for amylase production was wheat bran with SR saline solution (1:2 v/v). Amylolytic activity was still improved (14.3%) with a mixture of wheat bran, corncob, starch and SR saline solution (1:1:0.3:4.6 w/w/w/v). The optimized culture conditions were initial pH 5, at 45 degrees C during 6 days and relative humidity around 76%. The crude extract exhibited temperature and pH optima around 65 degrees C and 4-5, respectively. Amylase activity was fully stable for 1 h at temperatures up to 75 degrees C, and at pH values between 2.5 and 7.5.
Resumo:
Aspergillus terricola and Aspergillus ochraceus, isolated from Brazilian soil, were cultivated in Vogel and Adams media supplemented with 20 different carbon sources, at 30 A degrees C, under static conditions, for 120 and 144 h, respectively. High levels of cellulase-free xylanase were produced in birchwood or oat spelt xylan-media. Wheat bran was the most favorable agricultural residue for xylanase production. Maximum activity was obtained at 60 A degrees C and pH 6.5 for A. terricola, and 65 A degrees C and pH 5.0 for A. ochraceus. A. terricola xylanase was stable for 1 h at 60 A degrees C and retained 50% activity after 80 min, while A. ochraceus xylanase presented a t (50) of 10 min. The xylanases were stable in an alkali pH range. Biobleaching of 10 U/g dry cellulose pulp resulted in 14.3% delignification (A. terricola) and 36.4% (A. ochraceus). The brightness was 2.4-3.4% ISO higher than the control. Analysis in SEM showed defibrillation of the microfibrils. Arabinase traces and beta-xylosidase were detected which might act synergistically with xylanase.
Resumo:
This study describes the production of xylanases from Aspergillus niveus, A. niger, and A. ochraceus under solid-state fermentation using agro-industrial residues as substrates. Enzyme production was improved using a mixture of wheat bran and yeast extract or peptone. When a mixture of corncob and wheat bran was used, xylanase production from A. niger and A. ochraceus increased by 18%. All cultures were incubated at 30 A degrees C at 70-80% relative humidity for 96 h. For biobleaching assays, 10 or 35 U of xylanase/g dry cellulose pulp were incubated at pH 5.5 for 1 or 2 h, at 55 A degrees C. The delignification efficiency was 20%, the brightness (percentage of ISO) increased two to three points and the viscosity was maintained confirming the absence of cellulolytic activity. These results indicated that the use of xylanases could help to reduce the amount of chlorine compounds used in cellulose pulp treatment.
Resumo:
The electrochemical performance of carbon fibers (CF) and boron-doped diamond electrodes grown on carbon fiber substrate (BDD/CF) was studied. CF substrates were obtained from polyacrylonitrile precursor heat treated at two different temperatures of 1000 and 2000 degrees C to produce the desirable CF carbon graphitization index. This graphitization process influenced the CF conductivity and its chemical surface, also analyzed from X-ray photoelectron spectroscopy measurements. These three-dimensional CF structures allowed a high incorporation of diamond films compared to other carbon substrates such as glass carbon or HOPG. The electrochemical responses, from these four classes of electrodes, were evaluated focusing their application as electrical double-layer capacitors using cyclic voltammetry and impedance measurements. Cyclic voltammetry results revealed that the electrode formed from BDD grown on CF-2000 presented a typical capacitor behavior with the best rectangular shape, compared to those electrodes of CF or BDD/CF-1000. Furthermore, the BDD/CF-2000 electrode presented the lowest impedance, associated to its significant capacitance value of 1940 mu F/cm(2) taking into account the BDD films. This behavior was attributed to the strong dependence between diamond coating texture and the CF graphitization temperature. The largest surface area of BDD/CF-2000 was promoted by its singular film growth mechanism associated to the substrate chemical surface. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
A sensitive and precise stir bar sorptive extraction (SBSE) combined with LC (SBSE/LC) analysis is described for simultaneous determination of methyl, ethyl, propyl, and butyl parabens in commercial cosmetic products in agreement with the European Union Cosmetics Directive 76/768/EEC. Important factors in the optimization of SB SE efficiency are discussed, such as time and temperature of extraction, pH, and ionic strength of the sample, matrix effects, and liquid desorption conditions by different modes (magnetic stirring, ultrasonic). The LOQs of the SBSE/LC method ranged from 30 to 200 ng/mg, with linear response over a dynamic range, from the LOQ to 2.5 mu g/mg, with a coefficient of determination higher than 0.993. The interday precision of the SBSE/LC method presented a coefficient of variation lower than 5%. The effectiveness of the proposed method was proven for analysis of commercial cosmetic products such as body creams, antiperspirant creams, and sunscreens.
Resumo:
Solid-state fermentation obtained from different and low-cost carbon sources was evaluated to endocellulases and endoxylanases production by Aspergillus japonicus C03. Regarding the enzymatic production the highest levels were observed at 30 degrees C, using soy bran added to crushed corncob or wheat bran added to sugarcane bagasse, humidified with salt solutions, and incubated for 3 days (xylanase) or 6 days (cellulase) with 70% relative humidity. Peptone improved the xylanase and cellulase activities in 12 and 29%, respectively. The optimum temperature corresponded to 60 degrees C and 50-55 degrees C for xylanase and cellulase, respectively, both having 4.0 as optimum pH. Xylanase was fully stable up to 40 degrees C, which is close to the rumen temperature. The enzymes were stable in pH 4.0-7.0. Cu(++) and Mn(++) increased xylanase and cellulase activities by 10 and 64%, respectively. A. japonicus C03 xylanase was greatly stable in goat rumen fluid for 4 h during in vivo and in vitro experiments.
Resumo:
We evaluated the associations between glycemic therapies and prevalence of diabetic peripheral neuropathy (DPN) at baseline among participants in the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) trial on medical and revascularization therapies for coronary artery disease (CAD) and on insulin-sensitizing vs. insulin-providing treatments for diabetes. A total of 2,368 patients with type 2 diabetes and CAD was evaluated. DPN was defined as clinical examination score > 2 using the Michigan Neuropathy Screening Instrument (MNSI). DPN odds ratios across different groups of glycemic therapy were evaluated by multiple logistic regression adjusted for multiple covariates including age, sex, hemoglobin A1c (HbA1c), and diabetes duration. Fifty-one percent of BARI 2D subjects with valid baseline characteristics and MNSI scores had DPN. After adjusting for all variables, use of insulin was significantly associated with DPN (OR = 1.57, 95% CI: 1.15-2.13). Patients on sulfonylurea (SU) or combination of SU/metformin (Met)/thiazolidinediones (TZD) had marginally higher rates of DPN than the Met/TZD group. This cross-sectional study in a cohort of patients with type 2 diabetes and CAD showed association of insulin use with higher DPN prevalence, independent of disease duration, glycemic control, and other characteristics. The causality between a glycemic control strategy and DPN cannot be evaluated in this cross-sectional study, but continued assessment of DPN and randomized therapies in BARI 2D trial may provide further explanations on the development of DPN.
Resumo:
There are scarce data about headache prevalence and its characteristics among elderly people. The aim was to carry out a cross-sectional study to determine the 1-year prevalence of tension-type and migraine headaches in people > 65 years old in the city of Sao Paulo, Brazil. All 1615 people living in the study catchment area who agreed to participate in the study answered a questionnaire based in the International Headache Society criteria. Prevalence (mean and 95% confidence interval) of any type of headache in the last year was 45.6% (43.2, 48.0). Prevalence of tension-type headache in the last year was 33.1% (30.8, 35.4): 28.1% (24.6, 31.6) for men and 36.4% (33.4, 39.4) for women; for migraine headaches, prevalence in the last year was 10.6% (9.1, 12.1): 5.1% (3.4, 6.8) for men and 14.1% (11.9, 16.3) for women. One-year prevalence rates of headaches, and especially of migraine headaches, are very high among the elderly in Brazil.
Resumo:
The phospholipases A(1) (PLA(1)s) from the venom of the social wasp Polybia paulista occur as a mixture of different molecular forms. To characterize the molecular origin of these structural differences, an experimental strategy was planned combining the isolation of the pool of PLAs from the wasp venom with proteomic approaches by using 2-D, MALDI-TOF-TOF MS and classical protocols of protein chemistry, which included N- and C-terminal sequencing. The existence of an intact form of PLA(1) and seven truncated forms was identified, apparently originating from controlled proteolysis of the intact protein; in addition to this, four of these truncated forms also presented carbohydrates attached to their molecules. Some of these forms are immunoreactive to specific-IgE, while others are not. These observations permit to raise the hypothesis that naturally occurring proteolysis of PLA(1), combined with protein glycosylation may create a series of different molecular forms of these proteins, with different levels of allergenicity. Two forms of PLA(2)s, apparently related to each other, were also identified; however, it was not possible to determine the molecular origin of the differences between both forms, except that one of them was glycosylated. None of these forms were immunoreactive to human specific IgE.
Resumo:
BACKGROUND CONTEXT: The vertebral spine angle in the frontal plane is an important parameter in the assessment of scoliosis and may be obtained from panoramic X-ray images. Technological advances have allowed for an increased use of digital X-ray images in clinical practice. PURPOSE: In this context, the objective of this study is to assess the reliability of computer-assisted Cobb angle measurements taken from digital X-ray images. STUDY DESIGN/SETTING: Clinical investigation quantifying scoliotic deformity with Cobb method to evaluate the intra- and interobserver variability using manual and digital techniques. PATIENT SAMPLE: Forty-nine patients diagnosed with idiopathic scoliosis were chosen based on convenience, without predilection for gender, age, type, location, or magnitude of the curvature. OUTCOME MEASURES: Images were examined to evaluate Cobb angle variability, end plate selection, as well as intra- and interobserver errors. METHODS: Specific software was developed to digitally reproduce the Cobb method and calculate semiautomatically the degree of scoliotic deformity. During the study, three observers estimated the Cobb angle using both the digital and the traditional manual methods. RESULTS: The results showed that Cobb angle measurements may be reproduced in the computer as reliably as with the traditional manual method, in similar conditions to those found in clinical practice. CONCLUSIONS: The computer-assisted method (digital method) is clinically advantageous and appropriate to assess the scoliotic curvature in the frontal plane using Cobb method. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
This study describes the normal morphology and morphometry of the dorsal cutaneous branch of the ulnar nerve (DCBU) in humans. Fourteen nerves of eight donors were prepared by conventional techniques for paraffin and epoxy resin embedding. Semiautomatic morphometric analysis was performed by means of specific computer software. Histograms of the myelinated and unmyelinated fiber population and the G-ratio distribution of fibers were plotted. Myelinated fiber density per nerve varied from 5,910 to 10,166 fibers/mm(2), with an average of 8,170 +/- 393 fibers/mm(2). The distribution was bimodal with peaks at 4.0 and 9.5 mu m. Unmyelinated fiber density per nerve varied from 50,985 to 127,108, with an average of 78,474 +/- 6, 610 fibers/mm(2), with a unimodal distribution displaying a peak at 0.8 mu m. This study thus adds information about the fascicles and myelinated and unmyelinated fibers of DCBU nerves in normal people, which may be useful in further studies concerning ulnar nerve neuropathies, mainly leprosy neuropathy.
Resumo:
Osteopontin (OPN) is a secreted, calcium-binding phosphorylated glycoprotein involved in several physiological and pathological events such as angiogenesis, apoptosis, inflammation, wound healing, vascular remodeling, calcification of mineralized tissues, and induction of cell proteases. There is growing interest in the role of OPN in breast cancer. In an attempt to obtain new insight into the pathogenesis of OPN-associated breast carcinomas, an immunohistochemical panel with 17 primary antibodies including cytokeratins and key regulators of the cell cycle was performed in 100 formalin-fixed paraffin-embedded samples of invasive breast carcinomas. OPN was expressed in 65% of tumors and was negatively correlated with estrogen (p=0.0350) and progesterone (p=0.0069) receptors, but not with the other markers and clinicopathological features evaluated including age, menstrual status, pathological grading, tumor size, and metastasis. There was no correlation between OPN expression and carcinomas of the basal-like phenotype (p=0.1615); however, OPN correlated positively with c-erbB-2 status (p=0.0286) and negatively with carcinomas of the luminal subtype (p=0.0353). It is well known that carcinomas overexpressing c-erbB-2 protein have a worse prognosis than luminal tumors. Here, we hypothesize that the differential expression of OPN in the first subtype of carcinomas may contribute to their more aggressive behavior. (Int J Biol Markers 2008; 23: 154-60)
Resumo:
Proteomic approaches have been useful for the identification of aberrantly expressed proteins in complex diseases such as cancer. These proteins are not only potential disease biomarkers, but also targets for therapy. The aim of this study was to identify differentially expressed proteins in diffuse astrocytoma grade II, anaplastic astrocytoma grade III and glioblastoma multiforme grade IV in human tumor samples and in non-neoplastic brain tissue as control using 2-DE and MS. Tumor and control brain tissue dissection was guided by histological hematoxylin/eosin tissue sections to provide more than 90% of tumor cells and astrocytes. Six proteins were detected as up-regulated in higher grade astrocytomas and the most important finding was nucleophosmin (NPM) (p < 0.05), whereas four proteins were down-regulated, among them raf kinase inhibitor protein (RKIP) (p < 0.05). We report here for the first time the alteration of NPM and RKIP expression in brain cancer. Our focus on these proteins was due to the fact that they are involved in the PI3K/AKT/mTOR and RAS/RAF/MAPK pathways, known for their contribution to the development and progression of gliomas. The proteomic data for NPM and RKIP were confirmed by Western blot, quantitative real-time PCR and immunohistochemistry. Due to the participation of NPM and RKIP in uncontrolled proliferation and evasion of apoptosis, these proteins are likely targets for drug development.