63 resultados para Particles (Nuclear physics)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

By using the NeXSPheRIO code, we study the elliptic-flow fluctuations in Au + Au collisions at 200 A GeV. It is shown that, by fixing the parameters of the model to correctly reproduce the charged pseudorapidity and the transverse-momentum distributions, reasonable agreement of < v(2)> with data is obtained, both as function of pseudorapidity as well as of transverse momentum, for charged particles. Our results on elliptic-flow fluctuations are in good agreement with the recently measured data on experiments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We propose a model for the antihyperon polarization in high-energy proton-nucleus inclusive reactions, based on the final-state interactions between the antihyperons and other produced particles (predominantly pions). To formulate this idea, we use the previously obtained low-energy pion-(anti-)hyperon interaction using effective chiral Lagrangians, and a hydrodynamic parametrization of the background matter, which expands and decouples at a certain freezeout temperature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We discuss consistency of the concept of external background in QFT. Different restrictions on magnitude of magnetic and electric fields are analyzed. The back reaction due to strong electric field is calculated and restrictions on the magnitude and duration of such a field are obtained. The problem of consistency of Dirac equation with a superstrong Coulomb field is discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider a Moyal plane and propose to make the noncommutativity parameter Theta(mu nu) bifermionic, i.e. composed of two fermionic (Grassmann odd) parameters. The Moyal product then contains a finite number of derivatives, which avoid the difficulties of the standard approach. As an example, we construct a two-dimensional noncommutative field theory model based on the Moyal product with a bifermionic parameter and show that it has a locally conserved energy-momentum tensor. The model has no problem with the canonical quantization and appears to be renormalizable.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Path-integral representations for a scalar particle propagator in non-Abelian external backgrounds are derived. To this aim, we generalize the procedure proposed by Gitman and Schvartsman of path-integral construction to any representation of SU(N) given in terms of antisymmetric generators. And for arbitrary representations of SU(N), we present an alternative construction by means of fermionic coherent states. From the path-integral representations we derive pseudoclassical actions for a scalar particle placed in non-Abelian backgrounds. These actions are classically analyzed and then quantized to prove their consistency.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We show that halo effects enhance fusion cross sections of weakly bound systems, comparing with the situation when there is no-halo. We introduce dimensionless fusion functions and energy variable quantity to investigate systematical trends in the fusion cross sections of weakly bound nuclei at near-barrier energies. We observe very clearly complete fusion suppression at energies above the barrier due to dynamic effects of the breakup on fusion. We explain this suppression in terms of the repulsive polarization potential produced by the breakup.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An experimental overview of reactions induced by the stable, but weakly-bound nuclei (6)Li, (7)Li and (9)Be, and by the exotic, halo nuclei (6)He, (8)B, (11)Be and (17)F On medium-mass targets, such as (58)Ni, (59)Co or (64)Zn, is presented. Existing data on elastic scattering, total reaction cross sections, fusion, breakup and transfer channels are discussed in the framework of a CDCC approach taking into account the breakup degree of freedom.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a large-scale systematics of charge densities, excitation energies and deformation parameters For hundreds of heavy nuclei The systematics is based on a generalized rotation vibration model for the quadrupole and octupole modes and takes into account second-order contributions of the deformations as well as the effects of finite diffuseness values for the nuclear densities. We compare our results with the predictions of classical surface vibrations in the hydrodynamical approximation. (C) 2010 Elsevier B V All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Relativistic heavy ion collisions are the ideal experimental tool to explore the QCD phase diagram. Several results show that a very hot medium with a high energy density and partonic degrees of freedom is formed in these collisions, creating a new state of matter. Measurements of strange hadrons can bring important information about the bulk properties of such matter. The elliptic flow of strange hadrons such as phi, K(S)(0), Lambda, Xi and Omega shows that collectivity is developed at partonic level and at intermediate p(T) the quark coalescence is the dominant mechanism of hadronization. The nuclear modification factor is an another indicator of the presence of a very dense medium. The comparison between measurements of Au+Au and d+Au collisions, where only cold nuclear matter effects are expected, can shed more light on the bulk properties. In these proceedings, recent results from the STAR experiment on bulk matter properties are presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The scalar form factor describes modifications induced by the pion over the quark condensate. Assuming that representations produced by chiral perturbation theory can be pushed to high values of negative-t, a region in configuration space is reached (r < R similar to 0.5 fm) where the form factor changes sign, indicating that the condensate has turned into empty space. A simple model for the pion incorporates this feature into density functions. When supplemented by scalar-meson excitations, it yields predictions close to empirical values for the mean square radius (< r(2)>(pi)(S) = 0.59 fm(2)) and for one of the low energy constants ((l) over bar (4) = 4.3), with no adjusted parameters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A study of the kinematics of the alpha-d coincidences in the (6)Li + (59)Co system at a bombarding energy of E(lab) = 29.6MeV is presented. With exclusive measurements performed over different angular intervals it is possible to identify the respective contributions of the sequential and direct projectile breakup components. The angular distributions of both breakup components are fairly well described by the Continuum-Discretized Coupled-Channels framework (CDCC). Furthermore, a careful analysis of these processes using a semiclassical approach provides information on both their lifetime and their distance of occurrence with respect to the target. Breakup to the low-lying (near-threshold) continuum is delayed, and happens at large internuclear distances. This suggests that the influence of the projectile breakup on the complete fusion process can be related essentially to the direct breakup to the (6)Li high-lying continuum spectrum.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present the multiplicity and pseudorapidity distributions of photons produced in Au + Au and Cu + Cu collisions at root(s)NN = 62.4 and 200 GeV. The photons are measured in the region -3.7 < eta < -2.3 using the photon Multiplicity detector in the STAR experiment at RHIC. The number of photons produced per average number of participating nucleon pairs increases with the beam energy and is independent of (lie collision centrality. For collisions with similar average numbers of participating nucleons the photon multiplicities are observed to be similar for An + Au and Cu + Cu collisions at a given beam energy. The ratios of the number of charged particles to photons in the measured pseudorapidity range are found to be 1.4 +/- 0.1 and 1.2 +/- 0.1 for root(s)NN = 62.4 and 200 GeV, respectively. The energy dependence of this ratio could reflect varying contributions from baryons to charged particles, while mesons are the dominant contributors to photon production in the given kinematic region. The photon pseudorapidity distributions normalized by average number of participating nucleon pairs, when plotted as a function of eta-Y(beam), are found to follow a longitudinal scaling independent of centrality and colliding ion species at both beam energies. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The reactions induced by the weakly bound (6)Li projectile interacting with the intermediate mass target (59)Co were investigated. Light charged particles singles and alpha-d coincidence measurements were performed at the near barrier energies E(lab) = 17.4, 21.5, 25.5 and 29.6 MeV. The main contributions of the different competing mechanisms are discussed. A statistical model analysis. Continuum-Discretized Coupled-Channels (CDCC) calculations and two-body kinematics were used as tools to provide information to disentangle the main components of these mechanisms. A significant contribution of the direct breakup was observed through the difference between the experimental sequential breakup cross section and the CDCC prediction for the non-capture breakup cross section. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study the effects of several approximations commonly used in coupled-channel analyses of fusion and elastic scattering cross sections. Our calculations are performed considering couplings to inelastic states in the context of the frozen approximation, which is equivalent to the coupled-channel formalism when dealing with small excitation energies. Our findings indicate that, in some cases, the effect of the approximations on the theoretical cross sections can be larger than the precision of the experimental data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new technique to analyze fusion data is developed. From experimental cross sections and results of coupled-channel calculations a dimensionless function is constructed. In collisions of strongly bound nuclei this quantity is very close to a universal function of a variable related to the collision energy, whereas for weakly bound projectiles the effects of breakup coupling are measured by the deviations with respect to this universal function. This technique is applied to collisions of stable and unstable weakly bound isotopes.