23 resultados para Paloposki, Outi: Variation in translation: literary translation into Finnish 1809-1850


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have demonstrated that the pharmacological activities displayed by Bothrops jararaca venom undergo a significant ontogenetic shift. Variation in the venom proteome is a well-documented phenomenon; however, variation in the venom peptidome is poorly understood. We report a comparative proteomic and peptidomic analysis of venoms from newborn and adult specimens of B. jararaca and correlate it with the evaluation of important venom features. We demonstrate that newborn and adult venoms have similar hemorrhagic activities, while the adult venom has a slightly higher lethal activity in mice; however, the newborn venom is extremely more potent to kill chicks. The coagulant activity of newborn venom upon human plasma is 10 times higher than that of adult venom. These differences were clearly reflected in their different profiles of SDS-PAGE, gelatin zimography, immunostaining using specific antibodies, glycosylation pattern, and concanavalin A-binding proteins. Furthermore, we report for the first time the analysis of the peptide fraction of newborn and adult venoms by MALDI-TOF mass spectrometry and LC-MS/MS, which revealed different contents of peptides, while the bradykinin potentiating peptides (BPPs) showed rather similar profiles and were detected in the venoms showing their canonical sequences and also novel sequences corresponding to BPPs processed from their precursor protein at sites so far not described. As a result of these studies, we demonstrated that the ontogenetic shift in diet, from ectothermic prey in early life to endothermic prey in adulthood, and in animal size are associated with changes in the venom proteome in B. jararaca species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Aims Several animals that live on bromeliads can contribute to plant nutrition through nitrogen provisioning (digestive mutualism). The bromeliad-living spider Psecas chapoda (Salticidae) inhabits and breeds on Bromelia balansae in regions of South America, but in specific regions can also appear on Ananas comosus (pineapple) plantations and Aechmea distichantha. Methods Using isotopic and physiological methods in greenhouse experiments, the role of labelled ((15)N) spider faeces and Drosophila melanogaster flies in the nutrition and growth of each host plant was evaluated, as well as seasonal variation in the importance of this digestive mutualism. Key Results Spiders contributed 0.6 +/- 0.2% (mean +/- s.e.; dry season) to 2.7 +/- 1% (wet season) to the total nitrogen in B. balansae, 2.4 +/- 0.4% (dry) to 4.1 +/- 0.3% (wet) in An. comosus and 3.8 +/- 0.4% (dry) to 5 +/- 1% (wet) in Ae. distichantha. In contrast, flies did not contribute to the nutrition of these bromeliads. Chlorophylls and carotenoid concentrations did not differ among treatments. Plants that received faeces had higher soluble protein concentrations and leaf growth (RGR) only during the wet season. Conclusions These results indicate that the mutualism between spiders and bromeliads is seasonally restricted, generating a conditional outcome. There was interspecific variation in nutrient uptake, probably related to each species` performance and photosynthetic pathways. Whereas B. balansae seems to use nitrogen for growth, Ae. distichantha apparently stores nitrogen for stressful nutritional conditions. Bromeliads absorbed more nitrogen coming from spider faeces than from flies, reinforcing the beneficial role played by predators in these digestive mutualisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Five Mbo I (Mbo-A, Mbo-M, Mbo-C(1), Mbo-C(2) and Mbo-C(3)) and Hinf I (Hinf-1 to Hinf-5) patterns were observed in Apis mellifera samples after restriction of a 485 bp fragment of the mitochondrial cytochrome-b (cyt-b) gene. Associating the cyt-b Restriction fragment length polymorphism (RFLP) pattern of each sample to its respective previously established COI-COII (Dra I sites) pattern, five restriction patterns (Mbo-C(1), Mbo-C(2), Mbo-C(3), Hinf-1 and Hinf-4) were observed in samples of maternal origin associated to the evolutionary branch C. No deletions or insertions were observed and the nucleotide substitution rate was estimated at 5.4%. Higher nucleotide diversity was observed among the branch C-haplotypes when compared with A and M lineages. Further studies are needed to confirm if the cyt-b + COI-COII haplotypes help to assign certain phylogeographic patterns to the branch C and to clarify phylogenetic relationships among A. mellifera subspecies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kayotypes of four neotropical teiid lizard species (Tupinambinae) were herein studied after conventional as well as silver staining and CBG-banding: Crocodilurus amazonicus (2n = 34), Tupinambis teguixin (2n = 36), Tupinambis merianae and Tupinambis quadrilineatus (2n = 38). The karyological data for T. quadrilineatus as well as those obtained using differential staining for all species were unknown until now. The karyotypes of all species presented 12 macrochromosomes identical in morphology, but differed in the number of microchromosomes: 22 in C. amazonicus, 24 in T. teguixin and 26 in T. quadrilineatus and T. merianae. The Ag-NOR located at the secondary constriction at the distal end of pair 2 is shared by all species, contrasting with the variability observed for this character in species of the related Teiinae. CBG-banding revealed a species-specific pattern in T. quadrilineatus with conspicuous interstitial C-blocks at the proximal region of the long arm of pair 4 and the whole heterochromatic short arm of pair 6. The karyological data reported here corroborates the relationship hypothesis obtained for Tupinambis based on molecular characters. T. teguixin presents the putative ancestral karyotype for the genus with 2n = 36 whereas T. merianae and T. quadrilineatus exhibit 2n = 38, due to an additional pair of microchromosomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Technical actions performed by two groups of judokas who won medals at World Championships and Olympic Games during the period 1995-2001 were analyzed. In the Super Elite group (n = 17) were the best athletes in each weight category. The Elite group (n = 16) were medal winners who were not champions and did not win more than three medals. Super Elite judokas used a greater number of throwing techniques which resulted in scores, even when expressed relative to the total number of matches performed, and these techniques were applied in more directions than those of Elite judokas. Further, the number of different throwing techniques and the variability of directions in which techniques were applied were significantly correlated with number of wins and the number of points and ippon scored. Thus, a greater number of throwing techniques and use of directions for attack seem to be important in increasing unpredictability during judo matches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mycoplasma synoviae (MS) is an important avian pathogen may cause both respiratory disease and joint inflammation synovitis in poultry, causing economic losses to the Brazilian poultry industry. The genotypic variation in 16S rRNA gene is unknown. Partial sequences of 16S rRNA gene of 19 strains of M. synoviae were sequenced and analyzed in order to obtain molecular characterization and evaluation of the genetic variability of strains from distinct Brazilian areas of poultry production. Different polymorphic patterns were observed. The number of polymorphic alterations in the studied strains ranged from 0 to 6. The nucleotide variations, including deletion, insertion and substitutions, ranged from 3 to 5. The genotypic diversity observed in this study may be explained by spontaneous mutations that may occur when a lineage remains in the same flock for long periods. The culling and reposition in poultry flocks may be responsible for the entry of new strains in different areas. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ureaplasma diversum infection in bulls may result in seminal vesiculitis, balanoposthitis and alterations in spermatozoids. In cows, it can cause placentitis, fetal alveolitis, abortion and the birth of weak calves. U. diversum ATCC 49782 (serogroups A), ATCC 49783 (serogroup C) and 34 field isolates were used for this study. These microorganisms were submitted to Polymerase Chain Reaction for 16S gene sequence determination using Tact High Fidelity and the products were purified and bi-directionally sequenced. Using the sequence obtained, a fragment containing four hypervariable regions was selected and nucleotide polymorphisms were identified based on their position within the 16S rRNA gene. Forty-four single nucleotide polymorphisms (SNP) were detected. The genotypic variability of the 16S rRNA gene of U. diversum isolates shows that the taxonomy classification of these organisms is likely much more complex than previously described and that 16S rRNA gene sequencing may be used to suggest an epidemiologic pattern of different origin strains. (c) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schistosoma mansoni is a well-adapted blood-dwelling parasitic helminth, persisting for decades in its human host despite being continually exposed to potential immune attack. Here, we describe in detail micro-exon genes (MEG) in S. mansoni, some present in multiple copies, which represent a novel molecular system for creating protein variation through the alternate splicing of short (<= 36 bp) symmetric exons organized in tandem. Analysis of three closely related copies of one MEG family allowed us to trace several evolutionary events and propose a mechanism for micro-exon generation and diversification. Microarray experiments show that the majority of MEGs are up-regulated in life cycle stages associated with establishment in the mammalian host after skin penetration. Sequencing of RT-PCR products allowed the description of several alternate splice forms of micro-exon genes, highlighting the potential use of these transcripts to generate a complex pool of protein variants. We obtained direct evidence for the existence of such pools by proteomic analysis of secretions from migrating schistosomula and mature eggs. Whole-mount in situ hybridization and immunolocalization showed that MEG transcripts and proteins were restricted to glands or epithelia exposed to the external environment. The ability of schistosomes to produce a complex pool of variant proteins aligns them with the other major groups of blood parasites, but using a completely different mechanism. We believe that our data open a new chapter in the study of immune evasion by schistosomes, and their ability to generate variant proteins could represent a significant obstacle to vaccine development.