17 resultados para Palmitate Uptake


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trypanosoma cruzi, the agent of Chagas` disease, alternates between different morphogenetic stages that face distinct physiological conditions in their invertebrate and vertebrate hosts, likely in the availability of glucose. While the glucose transport is well characterized in epimastigotes of T cruzi, nothing is known about how the mammalian stages acquire this molecule. Herein glucose transport activity and expression were analyzed in the three developmental stages present in the vertebrate cycle of T cruzi. The infective trypomastigotes showed the highest transport activity (V(max) = 5.34 +/- 0.54 nmol/min per mg of protein: K(m) = 0.38 +/- 0.01 mM) when compared to intracellular epimastigotes (V(max) = 2.18 +/- 0.20 nmol/min per mg of protein; K(m) = 0.39 +/- 0.01 mM). Under the conditions employed no transport activity could be detected in amastigotes. The gene of the glucose transporter is expressed at the mRNA level in trypomastigotes and in intracellular epimastigotes but not in amastigotes, as revealed by real-time PCR. In both trypomastigotes and intracellular epimastigotes protein expression could be detected by Western blot with an antibody raised against the glucose transporter correlating well with the transport activity measured experimentally. Interestingly, anti-glucose transporter antibodies showed a strong reactivity with glycosome and reservosome organelles. A comparison between proline and glucose transport among the intracellular differentiation forms is presented. The data suggest that the regulation of glucose transporter reflects different energy and carbon requirements along the intracellular life cycle of T cruzi. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrogen uptake and metabolism are essential to microbial growth. Gat1 belongs to a conserved family of zinc finger containing transcriptional regulators known as GATA-factors. These factors activate the transcription of Nitrogen Catabolite Repression (NCR) sensitive genes when preferred nitrogen sources are absent or limiting. Cryptococcus neoformans GAT1 is an ortholog to the Aspergillus nidulans AreA and Candida albicans GAD genes. In an attempt to define the function of this transcriptional regulator in C. neoformans, we generated null mutants (gat1 Delta) of this gene. The gat 1 mutant exhibited impaired growth on all amino acids tested as sole nitrogen sources, with the exception of arginine and proline. Furthermore, the gat1 mutant did not display resistance to rapamycin, an immunosuppressant drug that transiently mimics a low-quality nitrogen source. Gal is not required for C. neoformans survival during macrophage infection or for virulence in a mouse model of cryptococcosis. Microarray analysis allowed the identification of target genes that are regulated by Gat1 in the presence of proline, a poor and non-repressing nitrogen source. Genes involved in ergosterol biosynthesis, iron uptake, cell wall organization and capsule biosynthesis, in addition to NCR-sensitive genes, are Gat1-regulated in C. neoformans. (C) 2010 Elsevier Inc. All rights reserved.