97 resultados para PROCYCLIC TRYPANOSOMA-BRUCEI
Resumo:
The increasing resistance of malarial parasites to almost all available drugs calls for the identification of new compounds and the detection of novel targets. Here, we establish the antimalarial activities of risedronate, one of the most potent bisphosphonates clinically used to treat bone resorption diseases, against blood stages of Plasmodium falciparum (50% inhibitory concentration [IC(50)] of 20.3 +/- 1.0 mu M). We also suggest a mechanism of action for risedronate against the intraerythrocytic stage of P. falciparum and show that protein prenylation seems to be modulated directly by this drug. Risedronate inhibits the transfer of the farnesyl pyrophosphate group to parasite proteins, an effect not observed for the transfer of geranylgeranyl pyrophosphate. Our in vivo experiments further demonstrate that risedronate leads to an 88.9% inhibition of the rodent parasite Plasmodium berghei in mice on the seventh day of treatment; however, risedronate treatment did not result in a general increase of survival rates.
Resumo:
Selenoproteins are characterized by the incorporation of at least one amino acid selenocysteine (Sec-U) encoded by in-frame UGA stop codons. These proteins, as well as the components of the Sec synthesis pathway, are present in members of the bacteria, archaea and eukaryote domains. Although not a ubiquitous pathway in all organisms, it was also identified in several protozoa, including the Kinetoplastida. Genetic evidence has indicated that the pathway is non-essential to the survival of Trypanosoma growing in non-stressed conditions. By analyzing the effects of RNA interference of the Trypanosoma brucei selenophosphate synthetase SPS2, we found a requirement under sub-optimal growth conditions. The present work shows that SPS2 is involved in oxidative stress protection of the parasite and its absence severely hampers the parasite survival in the presence of an oxidizing environment that results in an apoptotic-like phenotype and cell death. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Superoxide dismutases (SODs) are a crucial class of enzymes in the combat against intracellular free radical damage. They eliminate superoxide radicals by converting them into hydrogen peroxide and oxygen. In spite of their very different life cycles and infection strategies, the human parasites Plasmodium falciparum, Trypanosoma cruzi and Trypanosoma brucei are known to be sensitive to oxidative stress. Thus the parasite Fe-SODs have become attractive targets for novel drug development. Here we report the crystal structures of FeSODs from the trypanosomes T. brucei at 2.0 angstrom and T. cruzi at 1.9 angstrom resolution, and that from P. falciparum at a higher resolution (2.0 angstrom) to that previously reported. The homodimeric enzymes are compared to the related human MnSOD with particular attention to structural aspects which are relevant for drug design. Although the structures possess a very similar overall fold, differences between the enzymes at the entrance to the channel which leads to the active site could be identified. These lead to a slightly broader and more positively charged cavity in the parasite enzymes. Furthermore, a statistical coupling analysis (SCA) for the whole Fe/MnSOD family reveals different patterns of residue coupling for Mn and Fe SODs, as well as for the dimeric and tetrameric states. In both cases, the statistically coupled residues lie adjacent to the conserved core surrounding the metal center and may be expected to be responsible for its fine tuning, leading to metal ion specificity.
Resumo:
Chagas disease, caused by infection with Trypanosoma cruzi, is an important cause of cardiovascular disease. It is increasingly clear that parasite-derived prostaglandins potently modulate host response and disease progression. Here, we report that treatment of experimental T. cruzi infection (Brazil strain) beginning 5 days post infection (dpi) with aspirin (ASA) increased mortality (2-fold) and parasitemia (12-fold). However, there were no differences regarding histopathology or cardiac structure or function. Delayed treatment with ASA (20 mg/kg) beginning 60 dpi did not increase parasitemia or mortality but improved ejection fraction. ASA treatment diminished the profile of parasite-and host-derived circulating prostaglandins in infected mice. To distinguish the effects of ASA on the parasite and host bio-synthetic pathways we infected cyclooxygenase-1 (COX-1) null mice with the Brazil-strain of T. cruzi. Infected COX-1 null mice displayed a reduction in circulating levels of thromboxane (TX)A(2) and prostaglandin (PG)F(2 alpha). Parasitemia was increased in COX-1 null mice compared with parasitemia and mortality in ASA-treated infected mice indicating the effects of ASA on mortality potentially had little to do with inhibition of prostaglandin metabolism. Expression of SOCS-2 was enhanced, and TRAF6 and TNF alpha reduced, in the spleens of infected ASA-treated mice. Ablation of the initial innate response to infection may cause the increased mortality in ASA-treated mice as the host likely succumbs more quickly without the initiation of the ""cytokine storm'' during acute infection. We conclude that ASA, through both COX inhibition and other ""off-target'' effects, modulates the progression of acute and chronic Chagas disease. Thus, eicosanoids present during acute infection may act as immunomodulators aiding the transition to and maintenance of the chronic phase of the disease. A deeper understanding of the mechanism of ASA action may provide clues to the differences between host response in the acute and chronic T. cruzi infection.
Resumo:
Calomys callosus is a wild rodent found naturally infected with different Trypanosoma cruzi strains. In the work described here, groups of male and female C callosus were subjected to orchiectomy, ovariectomy and sham operation. One month after surgery, animals were inoculated intraperitoneally (i.p.) with 4 x 10(4) blood trypomastigotes of the ""Y"" strain of T. cruzi. Parasitemia, triglycerides, nitric oxide (NO) and concanavalin A (ConA)-induced proliferation were evaluated. Parasitemia during the course of infection was significantly higher in infected and sham operated animals as compared to infected orchiectomized animals. The opposite was observed in the ovariectomized and infected group. Orchiectomized and infected animals displayed elevated triglyceride levels, as well as a more vigorous immune response, with higher splenocyte proliferation and elevated concentrations of NO. Ovariectomy resulted in an impaired immune response, as observed by a reduction of splenocyte proliferation and NO concentration. The results suggest a pivotal role for gonadal hormones in the modulation of triglyceride levels and the magnitude of the immune response during the acute phase of T. cruzi infection. (C) 2008 Published by Elsevier B.V.
Resumo:
The study was undertaken to evaluate changes in the activity of adenosine deaminase (ADA) in brains of rats infected by Trypanosoma evansi. Each rat was intraperitoneally infected with 10(6) trypomastigotes either suspended in fresh (group A; n = 13) and cryopreserved blood (group B; n = 13). Thirteen animals were used as control (group C). ADA activity was estimated in the cerebellum, cerebral cortex, striatum and hippocampus. No differences (P > 0.05) in ADA activity were observed in the cerebellum between infected and non-infected animals. Significant (P < 0.05) reductions in ADA activity occurred in cerebral cortex in acutely (day 4 post-infection; PI) and chronically (day 20 PI) infected rats. ADA activity was significantly (P < 0.05) decreased in the hippocampus in acutely infected rats, but significantly (P < 0.05) increased in the chronically infected rats. Significant (P < 0.05) reductions in ADA activity occurred in the striatum of chronically infected rats. Parasites could be found in peripheral blood and brain tissue through microscopic examination and PCR assay, respectively, in acutely and chronically infected rats. The reduction of ADA activity in the brain was associated with high levels of parasitemia and anemia in acute infections. Alterations in ADA activity of the brain in T. evansi-infected rats may have implications for pathogenesis of the disease. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Salivarian trypanosomes pose a substantial threat to livestock, but their full diversity is not known. To survey trypanosomes carried by tsetse in Tanzania, DNA samples from infected proboscides of Glossina pallidipes and G. swynnertoni were identified using fluorescent fragment length barcoding (FFLB), which discriminates species by size polymorphisms in multiple regions of the ribosomal RNA locus. FELLB identified the trypanosomes in 65 of 105 (61.9%) infected proboscides, revealing 9 mixed infections. Of 7 different FFLB profiles, 2 were similar but not identical to reference West African Trypanosoma vivax; 5 other profiles belonged to known species also identified in fly midguts. Phylogenetic analysis of the glycosomal glyceraldehyde phosphate dehydrogenase gene revealed that the Tanzanian T. vivax samples fell into 2 distinct groups, both outside the main chide of African and South American T. vivax. These new T. vivax genotypes were common and widespread in tsetse in Tanzania. The T. brucei-like trypanosome previously described from tsetse midguts was also found in 2 proboscides, demonstrating a salivarian transmission route. Investigation of mammalian host range and pathogenicity will reveal the importance of these new trypanosomes for the epidemiology and control of animal trypanosomiasis in East Africa.
Resumo:
We characterized sequences from genes encoding cathepsin L-like (CatL-like) cysteine proteases from African and South American isolates of Trypanosoma vivax and T. vivax-like organisms, and evaluated their suitability as genetic markers for population structure analysis and diagnosis. Phylogenetic analysis of sequences corresponding to CatL-like catalytic domains revealed substantial polymorphism, and clades of sequences (TviCatL1-9) were separated by large genetic distances. TviCatL1-4 sequences were from cattle isolates from West Africa (Nigeria and Burkina Faso) and South America (Brazil and Venezuela), which belonged to the same T. vivax genotype. T. vivax-like genotypes from East Africa showed divergent sequences, including TviCatL5-7 for isolates from Mozambique and TviCatL8-9 for an isolate from Kenya. Phylogenetic analysis of CatL-like gene data supported the relationships among trypanosome species reflected in the phylogenies based on the analysis of small subunit (SSU) of ribosomal RNA gene sequence data. The discovery of different CatL-like sequences for each genotype, defined previously by ribosomal DNA data, indicate that these sequences provide useful targets for epidemiological and population genetic studies. Regions in CatL-like sequences shared by all T. vivax genotypes but not by other trypanosomes allowed the establishment of a specific and sensitive diagnostic PCR for epidemiological studies in South America and Africa. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this study, we addressed the phylogenetic and taxonomic relationships of Trypanosoma vivax and related trypanosomes nested in the subgenus Duttonella through combined morphological and phylogeographical analyses. We previously demonstrated that the clade T. vivax harbours a homogeneous clade comprising West African/South American isolates and the heterogeneous East African isolates. Herein we characterized a trypanosome isolated from a nyala antelope (Tragelaphus angasi) wild-caught in Mozambique (East Africa) and diagnosed as T. vivax-like based on biological, morphological and molecular data. Phylogenetic relationships, phylogeographical patterns and estimates of genetic divergence were based on SSU and ITS rDNA sequences of T. vivax from Brazil and Venezuela (South America), Nigeria (West Africa), and from T. vivax-like trypanosomes from Mozambique, Kenya and Tanzania (East Africa). Despite being well-supported within the T. vivax clade, the nyala trypanosome was highly divergent from all other T. vivax and T. vivax-like trypanosomes, even those from East Africa. Considering its host origin, morphological features, behaviour in experimentally infected goats, phylogenetic placement, and genetic divergence this isolate represents a new genotype of trypanosome closely phylogenetically related to T. vivax. This study corroborated the high complexity and the existence of distinct genotypes yet undescribed within the subgenus Duttonella.
Resumo:
Trypanosoma cruzi, the agent of Chagas` disease, alternates between different morphogenetic stages that face distinct physiological conditions in their invertebrate and vertebrate hosts, likely in the availability of glucose. While the glucose transport is well characterized in epimastigotes of T cruzi, nothing is known about how the mammalian stages acquire this molecule. Herein glucose transport activity and expression were analyzed in the three developmental stages present in the vertebrate cycle of T cruzi. The infective trypomastigotes showed the highest transport activity (V(max) = 5.34 +/- 0.54 nmol/min per mg of protein: K(m) = 0.38 +/- 0.01 mM) when compared to intracellular epimastigotes (V(max) = 2.18 +/- 0.20 nmol/min per mg of protein; K(m) = 0.39 +/- 0.01 mM). Under the conditions employed no transport activity could be detected in amastigotes. The gene of the glucose transporter is expressed at the mRNA level in trypomastigotes and in intracellular epimastigotes but not in amastigotes, as revealed by real-time PCR. In both trypomastigotes and intracellular epimastigotes protein expression could be detected by Western blot with an antibody raised against the glucose transporter correlating well with the transport activity measured experimentally. Interestingly, anti-glucose transporter antibodies showed a strong reactivity with glycosome and reservosome organelles. A comparison between proline and glucose transport among the intracellular differentiation forms is presented. The data suggest that the regulation of glucose transporter reflects different energy and carbon requirements along the intracellular life cycle of T cruzi. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In trypanosomatids the involvement of mitochondrial complex I in NADH oxidation has long been debated. Here, we took advantage of natural Trypanosoma cruzi mutants which present conspicuous deletions in ND4, ND5 and ND7 genes coding for complex I subunits to further investigate its functionality. Mitochondrial bioenergetics of wild type and complex I mutants showed no significant differences in oxygen consumption or respiratory control ratios in the presence of NADH-linked substrates or FADH(2)-generating succinate. No correlation could be established between mitochondrial membrane potentials and ND deletions. Since release of reactive oxygen species occurs at complex I, we measured mitochondrial H(2)O(2) formation induced by different substrates. Significant differences not associated to ND deletions were observed among the parasite isolates, demonstrating that these mutations are not important for the control of oxidant production. Our data support the notion that complex I has a limited function in T. cruzi.
Resumo:
Este estudo teve o objetivo de relatar a ocorrência de Trypanosoma vivax no Sul do Brasil. O protozoário foi diagnosticado em esfregaço sanguíneo de um bovino e a identificação baseada na morfologia das formas tripomastigotas e confirmada pela técnica de reação em cadeia de polimerases (PCR). O animal infectado apresentou sintomatologia compatível com a forma nervosa da infecção por T. vivax. Outros bovinos que compartilhavam o mesmo ambiente apresentaram resultados negativos para T. vivax por PCR. Este é o primeiro registro de T. vivax no Estado do Rio Grande do Sul e na região Sul do Brasil.
Resumo:
The activity of the antineoplastic drug tamoxifen was evaluated against Trypanosoma cruzi. In vitro activity was determined against epimastigote, trypomastigote and amastigote forms of CL14, Y and Y benznidazole resistant T. cruzi strains. Regardless of the strain used, the drug was active against all life-cycle stages of the parasite with a half maximal effective concentration ranging from 0.7-17.9 µM. Two experimental models of acute Chagas disease were used to evaluate the in vivo efficacy of treatment with tamoxifen. No differences in parasitemia and mortality were observed between control mock-treated and tamoxifen-treated mice.
Resumo:
A phytochemical investigation of the ethanolic extract of stalks of Senna martiana Benth. (Leguminoseae), native specie of northeast Brazil, resulted in the isolation and spectroscopic characterization of a new bianthrone glycoside, martianine 1 (10,10'-il-chrysophanol-10-oxi10,10'-bi-glucosyl). Its identification was established by HRMS, IR and 2D NMR experiments. The evaluation of martianine trypanocidal activity was carried out against gliceraldehyde 3-phosphate dehydrogenase enzyme from Trypanosoma cruzi. Its inhibitory constant (Ki) is in the low micromolar concentration and it was determined by isothermal titration calorimetry to be 27.3 ± 2.47 µmol L-1. The non-competitive mechanism is asserted to be putative of the mode of action martianine displays against T. cruzi GAPDH. Results show that martianine has a great potential to become new lead molecule by inhibiting this key enzyme and for the development of new drugs against Chagas disease.
Screening of Trypanosoma cruzi glycosomal glyceraldehyde-3-phosphate dehydrogenase enzyme inhibitors
Resumo:
The inhibitory activity of crude extracts of Meliaceae and Rutaceae plants on glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) enzyme from Trypanosoma cruzi was evaluated at 100 μg/mL. Forty-six extracts were tested and fifteen of them showed significant inhibitory activity (IA % > 50). The majority of the assayed extracts of Meliaceae plants (Cedrela fissilis, Cipadessa fruticosa and Trichilia ramalhoi) showed high ability to inhibit the enzymatic activity. The fractionation of the hexane extract from branches of C. fruticosa led to the isolation of three flavonoids: flavone, 7-methoxyflavone and 3',4',5',5,7-pentamethoxyflavone. The two last compounds showed high ability to inhibit the gGAPDH activity. Therefore, the assayed Meliaceae species could be considered as a promising source of lead compounds against Chagas' disease.