18 resultados para PLASMON RESONANCE SPECTROSCOPY
Resumo:
Gold nanoparticles (AuNP) incorporated into hydrotalcite (HT), provide an interesting type of pigment in which temperature can modulate the plasmon resonance and the aggregation phenomenon. As inferred from microscopy techniques, the preferential binding sites are located at the border of the HT external basal surface, leading to aggregates of gold nanoparticles displaying characteristic plasmon resonance and interference bands around 520 and 700 nm, respectively. The thermally induced color changes in the HT-supported gold material arise from the competition between of nanoparticles aggregation and fusion processes, as characterized by TEM and STM. A laser beam can also induce such changes, allowing the writing of optical information on this type of material.
Resumo:
Triplet-excited riboflavin ((3)RF*) was found by laser flash photolysis to be quenched by polyunsaturated fatty acid methyl esters in tert-butanol/water (7:3, v/v) in a second-order reaction with k similar to 3.0 x 10(5) L mol(-1) s(-1) at 25 degrees C for methyl linoleate and 3.1 x 10(6) L mol(-1) s(-1), with Delta H double dagger = 22.6 kJ mol(-1) and Delta S double dagger = -62.3 J K(-1) mol(-1), for methyl linolenate in acetonitrile/water (8:2, v/v). For methyl oleate, k was <10(4) L mol(-1) s(-1). For comparison, beta-casein was found to have a rate constant k similar to 4.9 x 10(8) L mol(-1) s(-1). Singlet-excited flavin was not quenched by the esters as evidenced by insensitivity of steady-state fluorescence to their presence. Density functional theory (DFT) calculations showed that electron transfer from unsaturated fatty acid esters to triplet-excited flavins is endergonic, while a formal hydrogen atom transfer is exergonic (Delta G(HAT)degrees = -114.3, -151.2, and -151.2 kJ mol(-1) for oleate, linoleate, and linolenate, respectively, in acetonitrile). The reaction is driven by acidity of the lipid cation radical for which a pK(a) similar to -0.12 was estimated by DFT calculations. Absence of electrochemical activity in acetonitrile during cyclic voltammetry up to 2.0 V versus NHE confirmed that Delta G(ET)degrees > 0 for electron transfer. Interaction of methyl esters with (3)RF* is considered as initiation of the radical chain, which is subsequently propagated by combination reactions with residual oxygen. In this respect, carbon-centered and alkoxyl radicals were detected using the spin trapping technique in combination with electron paramagnetic resonance spectroscopy. Moreover, quenching of 3RF* yields, directly or indirectly, radical species which are capable of initiating oxidation in unsaturated fatty acid methyl esters. Still, deactivation of triplet-excited flavins by lipid derivatives was slower than by proteins (factor up to 10(4)), which react preferentially by electron transfer. Depending on the reaction environment in biological systems (including food), protein radicals are expected to interfere in the mechanism of light-induced lipid oxidation.
Resumo:
Essential oils are good candidates for the substitution of conventional medicinal treatments. Many articles and patents for their use have been published in recent years. The most attractive aspects of using essential oils as medicaments are their natural source and rapid permeability. Besides permeability, the solubility behavior of a drug is a key determinant of its oral bioavailability. Based on these characteristics, the aim of this study was to synthesize an essential oil derivative compound, using the raw oil extracted from Syzygium aromaticum L., without previous purification. The Eugenol molecular modification may diminish the problems of water solubility and bioavailability. The Eugenyl acetate molecule was characterized and its molecular modification investigated, including its structural properties and stereochemistry. This study was performed applying techniques, such as carbon-13 nuclear magnetic resonance spectroscopy (C-13 NMR), X-ray crystallographic analysis (XRD), powder X-ray diffraction (PXRD) and microscopic recording.