19 resultados para PHOSPHOLIPIDS
Resumo:
The antiparasitic property of peptides is believed to be associated with their interactions with the protozoan membrane, which calls for research on the identification of membrane sites capable of peptide binding. In this study we investigated the interaction of a lipophilicglutathioine peptide known to be effective against the African Sleeping Sickness (ASS - African Trypanosomiasis) and cell membrane models represented by Langmuir monolayers. It is shown that even small amounts of the peptide affect the monolayers of some phospholipids and other lipids, which points to a significant interaction. The latter did not depend on the electrical charge of the monolayer-forming molecules but the peptide action was particularly distinctive for cholesterol + sphingomyelin monolayers that roughly resemble rafts on a cell membrane. Using in situ polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS), we found that the orientation of the peptide is affected by the phospholipids and dioctadecyldimethylammonium bromide (DODAB), but not in monolayers comprising cholesterol + sphingomyelin. In this mixed monolayer resembling rafts, the peptide still interacts and has some induced order, probably because the peptide molecules are fitted together into a compact monolayer. Therefore, the lipid composition of the monolayer modulates the interaction with the lipophilic glutathioine peptide, and this may have important implications in understanding how the peptide acts on specific sites of the protozoan membrane. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The polysaccharide chitosan has been largely used in many biological applications as a fat and cholesterol reducer, bactericide agent, and wound healing material. While the efficacy for some of such uses is proven, little is known about the molecular-level interactions involved in these applications. In this study, we employ mixed Langmuir and Langmuir-Blodgett (LB) films of negatively charged dimyristoyl phosphatidic acid (DMPA) anti cholesterol as cell membrane models to investigate the role of cholesterol in the molecular-level action of chitosan. Chitosan does not remove cholesterol froth the monolayer. The interaction with chitosan tends to expand the DMPA monolayer due to its interpenetration within the film. On the other hand, cholesterol induces condensation of the DMPA monolayer. The competing effects cause the surface pressure isotherms of mixed DMPA-cholesterol films on a chitosan subphase to be unaffected by the cholesterol mole fraction, due to distinct degrees of chitosan penetration into the film in the presence of cholesterol. By combining polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) and sum-frequency generation spectroscopy (SFG), we showed that chitosan induces order into negatively charged phospholipid layers, whereas the opposite occurs for cholesterol. In conclusion, chitosan has its penetration in the film modulated by cholesterol, and electrostatic interactions with negatively charged phospholipids, such as DMPA, are crucial for the action of chitosan.
Resumo:
The action of a synthetic antimicrobial peptide analog of Plantaricin 149 (Pln149a) against Saccharomyces cerevisiae and its interaction with biomembrane model systems were investigated. Pln149a was shown to inhibit S. cerevisiae growth by more than 80% in YPD medium, causing morphological changes in the yeast wall and remaining active and resistant to the yeast proteases even after 24 h of incubation. Different membrane model systems and carbohydrates were employed to better describe the Pln149a interaction with cellular components using circular dichroism and fluorescence spectroscopies, adsorption kinetics and surface elasticity in Langmuir monolayers. These assays showed that Pln149a does not interact with either mono/polysaccharides or zwitterionic LUVs, but is strongly adsorbed to and incorporated into negatively charged surfaces, causing a conformational change in its secondary structure from random-coil to helix upon adsorption. From the concurrent analysis of Pln149a adsorption kinetics and dilatational surface elasticity data, we determined that 2.5 mu M is the critical concentration at which Pln149a will disrupt a negative DPPG monolayer. Furthermore, Pln149a exhibited a carpet-like mechanism of action, in which the peptide initially binds to the membrane, covering its surface and acquiring a helical structure that remains associated to the negatively charged phospholipids. After this electrostatic interaction, another peptide region causes a strain in the membrane, promoting its disruption. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Background: The relationship between CETP and postprandial hyperlipemia is still unclear. We verified the effects of varying activities of plasma CETP on postprandial lipemia and precocious atherosclerosis in asymptomatic adult women. Methods: Twenty-eight women, selected from a healthy population sample (n = 148) were classified according to three CETP levels, all statistically different: CETP deficiency (CETPd <= 4.5%, n = 8), high activity (CETPi >= 23.8, n = 6) and controls (CTL, CETP >= 4.6% and <= 23.7%, n = 14). After a 12 h fast they underwent an oral fat tolerance test (40 g of fat/m(2) of body surface area) for 8 hours. TG, TG-rich-lipoproteins (TRL), cholesterol and TRL-TG measurements (AUC, AUIC, AR, RR and late peaks) and comparisons were performed on all time points. Lipases and phospholipids transfer protein (PLTP) were determined. Correlation between carotid atherosclerosis (c-IMT) and postprandial parameters was determined. CETP TaqIB and I405V and ApoE-epsilon 3/epsilon 2/epsilon 4 polymorphisms were examined. To elucidate the regulation of increased lipemia in CETPd a multiple linear regression analysis was performed. Results: In the CETPi and CTL groups, CETP activity was respectively 9 and 5.3 higher compared to the CETPd group. Concentrations of all HDL fractions and ApoA-I were higher in the CETPd group and clearance was delayed, as demonstrated by modified lipemia parameters (AUC, AUIC, RR, AR and late peaks and meal response patterns). LPL or HL deficiencies were not observed. No genetic determinants of CETP deficiency or of postprandial lipemia were found. Correlations with c-IMT in the CETPd group indicated postprandial pro-atherogenic associations. In CETPd the regression multivariate analysis (model A) showed that CETP was largely and negatively predicted by VLDL-C lipemia (R(2) = 92%) and much less by TG, LDL-C, ApoAI, phospholipids and non-HDL-C. CETP (model B) influenced mainly the increment in ApoB-100 containing lipoproteins (R(2) = 85% negatively) and phospholipids (R(2) = 13%), at the 6(th)h point. Conclusion: The moderate CETP deficiency phenotype included a paradoxically high HDL-C and its sub fractions (as earlier described), positive associations with c-IMT, a postprandial VLDL-C increment predicting negatively CETP activity and CETP activity regulating inversely the increment in ApoB100-containing lipoproteins. We hypothesize that the enrichment of TG content in triglyceride-rich ApoB-containing lipoproteins and in TG rich remnants increases lipoproteins` competition to active lipolysis sites, reducing their catabolism and resulting on postprandial lipemia with atherogenic consequences.