141 resultados para Oxygen-evolving complex
Resumo:
New tetraruthenated manganese (III) porphyrins were synthesized and characterized (P-31 NMR, cyclic voltammetry, UV-Vis). This new system presents four units of cationic ``[RuCl(dppb)(X-bipy)](+)``. The electrochemical and catalytic properties of the central manganese (III) show dependence on the characteristics of the peripheral ruthenium complexes as evidenced by the Mn-(III)/Mn-(II) reduction potential. The catalytic oxidation reactions of olefins, cyclohexene and cyclohexane, were carried out in the presence of tetrapyridyl manganese (III) porphyrins containing cationic ruthenium complex and using iodosylbenzene as oxygen donor. The performance of these new tetraruthenated porphyrins systems were evaluated and compared with the manganese porphyrin. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In trypanosomatids the involvement of mitochondrial complex I in NADH oxidation has long been debated. Here, we took advantage of natural Trypanosoma cruzi mutants which present conspicuous deletions in ND4, ND5 and ND7 genes coding for complex I subunits to further investigate its functionality. Mitochondrial bioenergetics of wild type and complex I mutants showed no significant differences in oxygen consumption or respiratory control ratios in the presence of NADH-linked substrates or FADH(2)-generating succinate. No correlation could be established between mitochondrial membrane potentials and ND deletions. Since release of reactive oxygen species occurs at complex I, we measured mitochondrial H(2)O(2) formation induced by different substrates. Significant differences not associated to ND deletions were observed among the parasite isolates, demonstrating that these mutations are not important for the control of oxidant production. Our data support the notion that complex I has a limited function in T. cruzi.
Resumo:
Reactive oxygen species are a by-product of mitochondrial oxidative phosphorylation, derived from a small quantity of superoxide radicals generated during electron transport. We conducted a comprehensive and quantitative study of oxygen consumption, inner membrane potentials, and H(2)O(2) release in mitochondria isolated from rat brain, heart, kidney, liver, and skeletal muscle, using various respiratory substrates (alpha-ketoglutarate, glutamate, succinate, glycerol phosphate, and palmitoyl carnitine). The locations and properties of reactive oxygen species formation were determined using oxidative phosphorylation and the respiratory chain modulators oligomycin, rotenone, myxothiazol, and antimycin A and the Uncoupler CCCP. We found that in mitochondria isolated from most tissues incubated under physiologically relevant conditions, reactive oxygen release accounts for 0.1-0.2% of O(2) consumed. Our findings support an important participation of flavoenzymes and complex III and a substantial role for reverse electron transport to complex I as reactive oxygen species sources. Our results also indicate that succinate is an important substrate for isolated mitochondrial reactive oxygen production in brain, heart, kidney, and skeletal muscle, whereas fatty acids generate significant quantities of oxidants in kidney and liver. Finally, we found that increasing respiratory rates is an effective way to prevent mitochondrial oxidant release under many, but not all, conditions. Altogether, our data uncover and quantify many tissue-, substrate-, and site-specific characteristics of mitochondrial ROS release. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
We previously demonstrated that Bis[(2-oxindol-3-ylimino)-2-(2-aminoethyl) pyridine-N, N`] copper(II) [Cu(isaepy)(2)] was an efficient inducer of the apoptotic mitochondrial pathway. Here, we deeply dissect the mechanisms underlying the ability of Cu(isaepy)(2) to cause mitochondriotoxicity. In particular, we demonstrate that Cu(isaepy)(2) increases NADH-dependent oxygen consumption of isolated mitochondria and that this phenomenon is associated with oxy-radical production and insensitive to adenosine diphosphate. These data indicate that Cu(isaepy)(2) behaves as an uncoupler and this property is also confirmed in cell systems. Particularly, SH-SY5Y cells show: (i) an early loss of mitochondrial transmembrane potential; (ii) a decrease in the expression levels of respiratory complex components and (iii) a significant adenosine triphosphate (ATP) decrement. The causative energetic impairment mediated by Cu(isaepy)(2) in apoptosis is confirmed by experiments carried out with rho(0) cells, or by glucose supplementation, where cell death is significantly inhibited. Moreover, gastric and cervix carcinoma AGS and HeLa cells, which rely most of their ATP production on oxidative phosphorylation, show a marked sensitivity toward Cu(isaepy)(2). Adenosine monophosphate-activated protein kinase (AMPK), which is activated by events increasing the adenosine monophosphate: ATP ratio, is deeply involved in the apoptotic process because the overexpression of its dominant/negative form completely abolishes cell death. Upon glucose supplementation, AMPK is not activated, confirming its role as fuel-sensing enzyme that positively responds to Cu(isaepy)(2)-mediated energetic impairment by committing cells to apoptosis. Overall, data obtained indicate that Cu(isaepy)(2) behaves as delocalized lipophilic cation and induces mitochondrial-sited reactive oxygen species production. This event results in mitochondrial dysfunction and ATP decrease, which in turn triggers AMPK-dependent apoptosis.
Resumo:
High fat diets are extensively associated with health complications within the spectrum of the metabolic syndrome. Some of the most prevalent of these pathologies, often observed early in the development of high-fat dietary complications, are non-alcoholic fatty liver diseases. Mitochondrial bioenergetics and redox state changes are also widely associated with alterations within the metabolic syndrome. We investigated the mitochondrial effects of a high fat diet leading to non-alcoholic fatty liver disease in mice. We found that the diet does not substantially alter respiratory rates, ADP/O ratios or membrane potentials of isolated liver mitochondria. However, H(2)O(2) release using different substrates and ATP-sensitive K(+) transport activities are increased in mitochondria from animals on high fat diets. The increase in H(2)O(2) release rates was observed with different respiratory substrates and was not altered by modulators of mitochondrial ATP-sensitive K(+) channels, indicating it was not related to an observed increase in K(+) transport. Altogether, we demonstrate that mitochondria from animals with diet-induced steatosis do not present significant bioenergetic changes, but display altered ion transport and increased oxidant generation. This is the first evidence, to our knowledge, that ATP-sensitive K(+) transport in mitochondria can be modulated by diet.
Resumo:
A new vanadium (IV) complex with the monoanion of 2,3-dihydroxypyridine (H(2)dhp), or 3-hydroxy-2(1H)-pyridone, was synthesized, characterized by physicochemical techniques and tested biologically. The EPR data for the [VO(Hdhp)(2)] complex in DMF are: g(x) = 1.9768, g(y) = 1.9768 and g(z) = 1.9390; A values (10(-4) cm(-1)): A(x), 59.4; A(y//), 59.4; A(z), 171.0. The vV=O band in the IR spectrum of the complex is at 986 cm(-1). The complex is paramagnetic, with mu(eff) = 1.65 BM (d(1), spin-only) at 25 degrees C. The irreversible oxidation process [V(V)/V(IV)] of the [VO(Hdhp)(2)] complex, as revealed in a cyclic voltammogram, occurs at 876 mV. The calculated molecular structure of [VO(Hdhp)(2)] shows the vanadium(IV) center in a distorted square pyramidal environment, with the oxo ligand in the apical position and the oxygen donor atoms of the Hdhp ligands in the basal positions. The ability of [VO(Hdhp)(2)] to mimic insulin, and its toxicity to hepato-biliary functions, were investigated in streptozotocin-induced diabetic rats and it was concluded that the length of treatment and the amount of [VO(Hdhp)(2)] administered were effective in reducing experimental diabetes.
Resumo:
This paper describes the case of a 12-year-old male patient who presented a severe lateral luxation of the maxillary central incisors due to a bicycle fall. Treatment involved suture of the soft tissues lacerations, and repositioning and splinting of the injured teeth, followed by endodontic treatment and periodontal surgery. After a 2-year follow-up, clinical and radiographic evaluation revealed that the incisors presented satisfactory esthetic and functional demands.
Resumo:
In Brazil, the Laurencia complex is represented by twenty taxa: Laurencia s.s. with twelve species, Palisada with four species (including Chondrophycus furcatus now that the proposal of its transference to Palisada is in process), and Osmundea and Yuzurua with two species each. The majority of the Brazilian species of the Laurencia complex have been phylogenetically analyzed by 54 rbcL sequences, including five other Rhodomelacean species as outgroups. The analysis showed that the Laurencia complex is monophyletic with high posterior probability value. The complex was separated into five clades, corresponding to the genera: Chondrophycus, Laurencia, Osmundea, Palisada, and Yuzurua. A bibliographical survey of the terpenoids produced by Brazilian species showed that only six species of Laurencia and five of Palisada (including C. furcatcus) have been submitted to chemical analysis with 48 terpenoids (47 sesquiterpenes and one triterpene) isolated. No diterpenes were found. Of the total, 23 sesquiterpenes belong to the bisabolane class and eighteen to the chamigrene type, whose biochemical precursor is bisabolane, two are derived from lauranes and four are triquinols. Despite the considerable number of known terpenes and their ecological and pharmacological importance, few experimental biological studies have been performed. In this review, only bioactivities related to human health were considered.
Resumo:
Four populations of Astyanax hastatus Myers 1928 from the Guapimirim River basin (Rio de Janeiro State) were analyzed and three distinct cytotypes identified. These cytotypes presented 2n = 50 chromosomes, with 4M+8SM+10ST+28A (Cytotype A), 8M+10SM+14ST+18A (Cytotype B), 6M+8SM+4ST+32A (Cytotype C) and scanty heterochromatin, mainly located throughout pericentromeric regions of several chromosomal pairs. No homologies with the As-51 satellite DNA were observed in the three cytotypes, although all of them presented multiple 18S rDNA sites, as detected by both silver nitrate staining and FISH (fluorescent in situ hybridization). The application of the term "species complex" in Astyanax is discussed from a cytotaxonomic viewpoint.
Resumo:
Though introduced recently, complex networks research has grown steadily because of its potential to represent, characterize and model a wide range of intricate natural systems and phenomena. Because of the intrinsic complexity and systemic organization of life, complex networks provide a specially promising framework for systems biology investigation. The current article is an up-to-date review of the major developments related to the application of complex networks in biology, with special attention focused on the more recent literature. The main concepts and models of complex networks are presented and illustrated in an accessible fashion. Three main types of networks are covered: transcriptional regulatory networks, protein-protein interaction networks and metabolic networks. The key role of complex networks for systems biology is extensively illustrated by several of the papers reviewed.
Resumo:
The development of new anti-cancer drugs of algal origin represents one of the least explored frontiers in medicinal chemistry. In this regard, the diversity of micro- and macroalgae found in Brazilian coastal waters can be viewed as a largely untapped natural resource. In this report, we describe a comparative study on the cytotoxic properties of extracts obtained from the Laurencia complex: Laurencia aldingensis, L. catarinensis, L. dendroidea, L. intricata, L. translucida, L. sp, and Palisada flagellifera. All of these species were collected in the coastal waters of the State of Espírito Santo, Brazil. Four out of the twelve samples initially investigated were found to show significant levels of toxicity towards a model tumor cell line (human uterine sarcoma, MES-SA). The highest levels of cytotoxicity were typically associated with non-polar (hexane) algal extracts, while the lowest levels of cytotoxicity were found with the corresponding polar (methanol) extracts. In this report, we also describe a biological model currently in development that will not only facilitate the search for new anti-cancer drug candidates of algal origin, but also permit the identification of compounds capable of inducing the destruction of multi-drug resistant tumors with greater efficiency than the pharmaceuticals currently in clinical use.
Resumo:
Atrioventricular valve complex of 30 Jafarabadi water buffaloes, adult males were studied in this research with no heart diseases. The animals were obtained from a slaughterhouse in Brazilian State of Parana. The hearts were opened at the third portion affording access to the valve complex. The complexes had its area, number and type of tendinous cords submitted to analysis. The results showed that the complex is composed by two cusps and four accessory cusps, two or three papillary muscles in which 10-25 tendinous cords fix on the cusps that face the ventricle wall. The total area of the complex was on average 38.56cm², with a minimum of 24.96cm² and a maximum of 55.54cm². Statistically, no relation between the number of cords and the cusps' area where they are inserted or with the number of papillary muscle where they originated from was observed.
Resumo:
The Anopheles (Nyssorhynchus) albitarsis complex includes six species: An. albitarsis, Anopheles oryzalymnetes Wilkerson and Motoki, n. sp., Anopheles marajoara, Anopheles dencorum, Anopheles janconnae Wilkerson and Sallum, n. sp., and An. albitarsis F. Except for An. deancorum, species of the complex are indistinguishable when only using morphology. The problematic distinction among species of the complex has made study of malaria transmission and ecology of An. albitarsis s.l. difficult. Consequently, involvement of species of the An. albitarsis complex in human Plasmodium transmission is not clear throughout its distribution range. With the aim of clarifying the taxonomy of the above species, with the exception of An. albitarsis F, we present comparative morphological and morphometric analyses, morphological redescriptions of three species and descriptions of two new species using individuals from populations in Brazil, Paraguay, Argentina and Venezuela. The study included characters from adult females, males, fourth-instar larvae, pupae and male genitalia of An. albitarsis, An. deaneorum and An. oryzalimnetes n. sp. For An. janconnae n. sp. only characters of the female, male and male genitalia were analysed. Fourth-instar larvae and pupae and male genitalia characteristics of all five species are illustrated. Bionomics and distribution data are given based on published literature records
Resumo:
The synthesis of [Ru(NO(2)) L(bpy)(2)](+) (bpy = 2,2'-bipyridine and L = pyridine (py) and pyrazine (pz)) can be accomplished by addition of [Ru(NO) L(bpy) 2](PF(6))(3) to aqueous solutions of physiological pH. The electrochemical processes of [Ru(NO2) L(bpy) 2]+ in aqueous solution were studied by cyclic voltammetry and differential pulse voltammetry. The anodic scan shows a peak around 1.00 V vs. Ag/AgCl attributed to the oxidation process centered on the metal ion. However, in the cathodic scan a second peak around-0.60 V vs. Ag/AgCl was observed and attributed to the reduction process centered on the nitrite ligand. The controlled reduction potential electrolysis at-0.80 V vs. Ag/AgCl shows NO release characteristics as judged by NO measurement with a NO-sensor. This assumption was confirmed by ESI/MS(+) and spectroelectrochemical experiment where cis-[Ru(bpy)(2)L(H(2)O)](2+) was obtained as a product of the reduction of cis-[Ru(II)(NO(2)) L(bpy)(2)](+). The vasorelaxation observed in denuded aortic rings pre-contracted with 0.1 mu mol L(-1) phenylephrine responded with relaxation in the presence of cis-[RuII(NO2) L(bpy) 2]+. The potential of rat aorta cells to metabolize cis-[RuII(NO(2)) L(bpy)(2)](+) was also followed by confocal analysis. The obtained results suggest that NO release happens by reduction of cis-[RuII(NO(2)) L(bpy)(2)](+) inside the cell. The maximum vasorelaxation was achieved with 1 x 10(-5) mol L(-1) of cis-[RuII(NO(2)) L(bpy)(2)](+) complex.