78 resultados para Orientation Signaling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work characterizes the analog performance of SOI n-MuGFETs with HfSiO gate dielectric and TiN metal gate with respect to the influence of the high-k post-nitridation. TiN thickness and device rotation. A thinner TiN metal gate is found favorable for improved analog characteristics showing an increase in intrinsic voltage gain. The devices where the high-k material is subjected to a nitridation step indicated a degradation of the Early voltage (V(EA)) values which resulted in a lower voltage gain. The 45 degrees rotated devices have a smaller V(EA) than the standard ones when a HfSiO dielectric is used. However, the higher transconductance of these devices, due to the increased mobility in the (1 0 0) sidewall orientation, compensates this V(EA) degradation of the voltage gain, keeping it nearly equal to the voltage gain values of the standard devices. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effect of glutamine on the expression of proteins involved in the nuclear factor-kappaB (NF-kappa B) signaling pathway of murine peritoneal macrophages. Since glutamine is essential for the normal functioning of macrophages, it was hypothesized that in vitro glutamine supplementation would increase NF-kappa B activation. Peritoneal macrophages were pretreated with glutamine (0, 0.6, 2 and 10 mM) before incubation with lipopolysaccharide (LPS), and the effects of glutamine on the production of tumor necrosis factor-alpha and on the expression and activity of proteins involved in the NF-kappa B signaling pathway were studied by an enzyme linked immuno-sorbent assay, Western blotting, and an electrophoretic mobility shift assay. Glutamine treatment (2 and 10 mM) increased the activation of NF-kappa B in LPS-stimulated peritoneal macrophages (P < 0.05). In non-stimulated cells, glutamine treatment (2 and 10 mM) significantly reduced I kappa B-alpha protein expression (P < 0.05). Glutamine modulates NF-kappa B signaling pathway by reducing the level of I kappa B-alpha, leading to an increase in NF-kappa B within the nucleus in peritoneal macrophages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the serum levels of SAA had been reported to be upregulated during inflammatory/infectious process, the role of this acute-phase protein has not been completely elucidated. In previous studies, we demonstrated that SAA stimulated the production of TNF-alpha, IL-1 beta, IL-8, NO, and ROS by neutrophils and/or mononuclear cells. Herein we demonstrate that SAA induces the expression and release of CCL20 from Cultured human blood mononuclear cells. We also focus on the signaling pathways triggered by SAA. in THP-1 cells SAA promotes phosphorylation of p38 and ERK1/2. Furthermore, the addition of SB203580 (p38 inhibitor) and PD98059 (ERK 1/2 inhibitor) inhibits the expression and release of CCL20 in mononuclear cells treated with SAA. Our results point to SAA as an important link of innate to adaptive immunity, once it might act on the recruitment of mononuclear cells. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human airway epithelium is constantly exposed to microbial products from colonizing organisms. Regulation of Toll-like receptor (TLR) expression and specific interactions with bacterial ligands is thought to mitigate exacerbation of inflammatory processes induced by the commensal flora in these cells. The genus Neisseria comprises pathogenic and commensal organisms that colonize the human nasopharynx. Neisseria lactamica is not associated with disease, but N. meningitidis occasionally invades the host, causing meningococcal disease and septicemia. Upon colonization of the airway epithelium, specific host cell receptors interact with numerous Neisseria components, including the PorB porin, at the immediate bacterial-host cell interface. This major outer membrane protein is expressed by all Neisseria strains, regardless of pathogenicity, but its amino acid sequence varies among strains, particularly in the surface-exposed regions. The interaction of Neisseria PorB with TLR2 is essential for driving TLR2/TLR1-dependent cellular responses and is thought to occur via the porin`s surface-exposed loop regions. Our studies show that N. lactamica PorB is a TLR2 ligand but its binding specificity for TLR2 is different from that of meningococcal PorB. Furthermore, N. lactamica PorB is a poor inducer of proinflammatory mediators and of TLR2 expression in human airway epithelial cells. These effects are reproduced by whole N. lactamica organisms. Since the responsiveness of human airway epithelial cells to colonizing bacteria is in part regulated via TLR2 expression and signaling, commensal organisms such as N. lactamica would benefit from expressing a product that induces low TLR2-dependent local inflammation, likely delaying or avoiding clearance by the host.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Foragers can improve search efficiency, and ultimately fitness, by using social information: cues and signals produced by other animals that indicate food location or quality. Social information use has been well studied in predator-prey systems, but its functioning within a trophic level remains poorly understood. Eavesdropping, use of signals by unintended recipients, is of particular interest because eavesdroppers may exert selective pressure on signaling systems. We provide the most complete study to date of eavesdropping between two competing social insect species by determining the glandular source and composition of a recruitment pheromone, and by examining reciprocal heterospecific responses to this signal. We tested eavesdropping between Trigona hyalinata and Trigona spinipes, two stingless bee species that compete for floral resources, exhibit a clear dominance hierarchy and recruit nestmates to high-quality food sources via pheromone trails. Gas chromatography-mass spectrometry of T. hyalinata recruitment pheromone revealed six carboxylic esters, the most common of which is octyl octanoate, the major component of T. spinipes recruitment pheromone. We demonstrate heterospecific detection of recruitment pheromones, which can influence heterospecific and conspecific scout orientation. Unexpectedly, the dominant T. hyalinata avoided T. spinipes pheromone in preference tests, while the subordinate T. spinipes showed neither attraction to nor avoidance of T. hyalinata pheromone. We suggest that stingless bees may seek to avoid conflict through their eavesdropping behavior, incorporating expected costs associated with a choice into the decision-making process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nest orientation in social insects has been intensively studied in warmer and cooler climates, particularly in the northern hemisphere. Previous studies have consistently shown that species subjected to these climatic conditions prefer to select mostly southern locations where the nests can gain direct sunlight. However, very little is known on nest orientation in tropical and subtropical social insects. We studied nest orientations initiated by swarms throughout a year in a Brazilian swarm-founding wasp, Polybia paulista von Ihering (Hymenoptera: Polistinae). Swarms selected various orientations as nest sites, but there was a particular trend in that swarms in the winter period (May-August) preferred to build northward-facing nests. This preference is opposite from that of social wasps observed in the northern hemisphere. Colonies of this species can potentially last for many years with continuous nesting, but nesting activities of colonies during the winter are severely limited due to cool temperature and a shortened day length. Northward-facing nests are warmer through the gain of direct solar heat during the winter period; consequently, choosing northward-facing sites may be advantageous for swarms in terms of a shortened brood development and shortened time needed to increase metabolic rates during warm-up for flight.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cell signaling cascades that mediate pigment movements in crustacean chromatophores are not yet well established, although Ca(2+) and cyclic nucleotide second messengers are involved. Here, we examine the participation of cyclic guanosine monophosphate (cGMP) in pigment aggregation triggered by red pigment concentrating hormone (RPCH) in the red ovarian chromatophores of freshwater shrimp. In Ca(2+)-containing (5.5 mmol l(-1)) saline, 10 mu mol l(-1) dibutyryl cGMP alone produced complete pigment aggregation with the same time course (approximate to 20 min) and peak velocity (approximate to 17 mu m/min) as 10(-8) mol l(-1) RPCH; however, in Ca(2+)-free saline (9 X 10(-11) mol l(-1) Ca(2+)), db-cGMP was without effect. The soluble guanylyl cyclase (GC-S) activators sodium nitroprusside (SNP, 0.5 mu mol l(-1)) and 3-morpholinosydnonimine (SIN-1, 100 mu mol l(-1)) induced moderate aggregation by themselves (approximate to 35%-40%) but did not affect RPCH-triggered aggregation. The GC-S inhibitors zinc protoporphyrin IX (ZnPP-XI, 30 mu mol l(-1)) and 6-anilino-5,8-quinolinedione (LY83583, 10 mu mol l(-1)) partially inhibited RPCH-triggered aggregation by approximate to 35%. Escherichia coli heat-stable enterotoxin (STa, 1 mu mol l(-1)), a membrane-receptor guanylyl cyclase stimulator, did not induce or affect RPCH-triggered aggregation. We propose that the binding of RPCH to an unknown membrane-receptor type activates a Ca(2+)-dependent signaling cascade coupled via cytosolic guanylyl cyclase and cGMP to protein kinase G-phosphorylated proteins that regulate aggregation-associated, cytoskeletal molecular motor activity. This is a further example of a cGMP signaling cascade mediating the effect of a crustacean X-organ neurosecretory peptide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Wnt signaling pathways play a key role in cell renewal, and there are two such pathways. In patients with rheumatoid arthritis (RA), the synovial membrane expresses genes such as Wnt and Fz at higher levels than those observed in patients without RA. The Wnt proteins are glycoproteins that bind to receptors of the Fz family on the cell surface. The Wnt/Fz complex controls tissue formation during embryogenesis, as well as throughout the process of limb development and joint formation. Recent studies have suggested that this signaling pathway plays a role in the pathophysiology of RA. Greater knowledge of the role of the Writ signaling pathway in RA could improve understanding of the differences in RA clinical presentation and prognosis. Further studies should also focus on Wnt family members as molecular targets in the treatment of RA. (C) 2009 Elsevier B.V. All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systemic lupus erythematosus (SLE) is a heterogeneous disease involving several immune cell types and pro-inflammatory signals, including the one triggered by binding of CD40L to the receptor CD40. Peroxisome-proliferator activated receptor gamma (PPAR gamma) is a transcription factor with anti-inflammatory properties. Here we investigated whether CD40 and PPAR gamma could exert opposite effects in the immune response and the possible implications for SLE. Increased PPAR gamma mRNA levels were detected by real-time PCR in patients with active SLE, compared to patients with inactive SLE PPAR gamma/GAPDH mRNA = 2.21 +/- 0.49 vs. 0.57 +/- 0.14, respectively (p < 0.05) or patients with infectious diseases and healthy subjects (p < 0.05). This finding was independent of the corticosteroid therapy. We further explored these observations in human THP1 and in SLE patient-derived macrophages, where activation of CD40 by CD40L promoted augmented PPAR gamma gene transcription compared to non-stimulated cells (PPAR gamma/GAPDH mRNA = 1.14 +/- 0.38 vs. 0.14 +/- 0.01, respectively; p < 0.05). This phenomenon occurred specifically upon CD40 activation, since lipopolysaccharide treatment did not induce a similar response. In addition, increased activity of PPAR gamma was also detected after CD40 activation, since higher PPAR gamma-dependent transcription of CD36 transcription was observed. Furthermore, CD40L-stimulated transcription of CD80 gene was elevated in cells treated with PPAR gamma-specific small interfering RNA (small interfering RNA, siRNA) compared to cells treated with CD40L alone (CD80/GAPDH mRNA = 0.11 +/- 0.04 vs. 0.05 +/- 0.02, respectively; p < 0.05), suggesting a regulatory role for PPAR gamma on the CD40/CD40L pathway. Altogether, our findings outline a novel mechanism through which PPAR gamma regulates the inflammatory signal initiated by activation of CD40, with important implications for the understanding of immunological mechanisms underlying SLE and the development of new treatment strategies. Lupus (2011) 20, 575-587.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wilms tumor (WT), a tumor composed of three histological components - blastema (BL), epithelia and stroma - is considered an appropriate model system to study the biological relationship between differentiation and tumorigenesis. To investigate molecular associations between nephrogenesis and WT, the gene expression pattern of individual cellular components was analyzed, using a customized platform containing 4,608 genes. WT gene expression patterns were compared to genes regulated during kidney differentiation. BL had a closer gene expression pattern to the earliest stage of normal renal development. The BL gene expression pattern was compared to that of fetal kidney (FK) and also between FK and mature kidney, identifying 25 common de-regulated genes supposedly involved in the earliest events of WT onset. Quantitative RT-PCR was performed, confirming the difference in expression levels for 13 of 16 genes (81.2%) in the initial set and 8 of 13 (61.5%) in an independent set of samples. An overrepresentation of genes belonging to the Wnt signaling pathway was identified, namely PLCG2, ROCK2 and adenomatous polyposis coli (APC). Activation of the Wnt pathway was confirmed in WT, using APC at protein level and PLCG2 at mRNA and protein level. APC showed positive nuclear immunostaining for an independent set of WT samples, similarly to the FK in week 11. Lack of PLCG2 expression was confirmed in WT and in FK until week 18. Taken together, these results provided molecular evidence of the recapitulation of the embryonic kidney by WT as well as involvement of the Wnt pathway in the earliest events of WT onset. Copyright (C) 2008 S. Karger AG, Basel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background/Aim: Galectin-3 has been associated with activated Wnt pathway, translocating beta-catenin into the nucleus. However, it is still unknown whether this lectin drives the Wnt signaling activation in lesions from galectin-3-deficient (Gal3(-/-)) mice. The purpose was to study beta-catenin expression in tongue lesions from Gal3(-/-) and wildtype (Gal3(+/+)) mice and the status of Wnt signaling. Materials and Methods: Twenty Gal3(-/-) and Gal3(+/+) male mice were challenged with 4-nitroquinolin-1-oxide and killed at week 16 and 32. Tongues were processed and stained with H&E to detect dysplasias and carcinomas. An imunohistochemical assay was performed to evaluate beta-catenin expression. Results: Carcinomas were more evident in Gal3(+/+) than Gal3(-/-) mice (55.5% vs. 28.5%, respectively; p>0.05). Elevated expression of non-membranous beta-catenin was observed in dysplasias and carcinomas from both groups (p>0.05). Conclusion: Absence of galectin-3 does not interfere in the pattern of beta-catenin expression and therefore in the mediation of the Wnt signaling pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neural phase signaling has gained attention as a putative coding mechanism through which the brain binds the activity of neurons across distributed brain areas to generate thoughts, percepts, and behaviors. Neural phase signaling has been shown to play a role in various cognitive processes, and it has been suggested that altered phase signaling may play a role in mediating the cognitive deficits observed across neuropsychiatric illness. Here, we investigated neural phase signaling in two mouse models of cognitive dysfunction: mice with genetically induced hyperdopaminergia [dopamine transporter knock-out (DAT-KO) mice] and mice with genetically induced NMDA receptor hypofunction [NMDA receptor subunit-1 knockdown (NR1-KD) mice]. Cognitive function in these mice was assessed using a radial-arm maze task, and local field potentials were recorded from dorsal hippocampus and prefrontal cortex as DAT-KO mice, NR1-KD mice, and their littermate controls engaged in behavioral exploration. Our results demonstrate that both DAT-KO and NR1-KD mice display deficits in spatial cognitive performance. Moreover, we show that persistent hyperdopaminergia alters interstructural phase signaling, whereas NMDA receptor hypofunction alters interstructural and intrastructural phase signaling. These results demonstrate that dopamine and NMDA receptor dependent glutamate signaling play a critical role in coordinating neural phase signaling, and encourage further studies to investigate the role that deficits in phase signaling play in mediating cognitive dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Angiotensin (Ang) I-converting enzyme (ACE) is involved in the control of blood pressure by catalyzing the conversion of Ang I into the vasoconstrictor Ang II and degrading the vasodilator peptide bradykinin. Human ACE also functions as a signal transduction molecule, and the binding of ACE substrates or its inhibitors initiates a series of events. In this study, we examined whether Ang II could bind to ACE generating calcium signaling. Chinese hamster ovary cells transfected with an ACE expression vector reveal that Ang II is able to bind with high affinity to ACE in the absence of the Ang II type 1 and type 2 receptors and to activate intracellular signaling pathways, such as inositol 1,4,5-trisphosphate and calcium. These effects could be blocked by the ACE inhibitor, lisinopril. Calcium mobilization was specific for Ang II, because other ACE substrates or products, namely Ang 1-7, bradykinin, bradykinin 1-5, and N-acetyl-seryl-aspartyl-lysyl-proline, did not trigger this signaling pathway. Moreover, in Tm5, a mouse melanoma cell line endogenously expressing ACE but not Ang II type 1 or type 2 receptors, Ang II increased intracellular calcium and reactive oxygen species. In conclusion, we describe for the first time that Ang II can interact with ACE and evoke calcium and other signaling molecules in cells expressing only ACE. These findings uncover a new mechanism of Ang II action and have implications for the understanding of the renin-Ang system. (Hypertension. 2011;57:965-972.) . Online Data Supplement

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The insulin/insulin-like signaling (IIS) pathway is an evolutionarily conserved module in the control of body size and correlated organ growth in metazoans. In the highly eusocial bees, the caste phenotypes differ not only in size and several structural features but also in individual fitness and life history. We investigated the developmental expression profiles of genes encoding the two insulin-like peptides (AmILP-1 and AmILP-2) and the two insulin receptors (AmInR-1 and AmInR-2) predicted in the honey bee genome. Quantitative PCR analysis for queen and worker larvae in critical stages of caste development showed that AmILP-2 is the predominantly transcribed ILP in both castes, with higher expression in workers than in queens. Expression of both InR genes sharply declined in fourth instar queen larvae, but showed little modulation in workers. On first sight, these findings are non-intuitive, considering the higher growth rates of queens, but they can be interpreted as possibly antagonistic crosstalk between the IIS module and juvenile hormone. Analyzing AmInR-1 and AmInR-2 expression in ovaries of queen and worker larvae revealed low transcript levels in queens and a sharp drop in AmInR-2 expression in fifth instar worker larvae, indicating relative independence in tissue-specific versus overall IIS pathway activity. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sepsis is a systemic inflammatory response resulting from the inability of the host to contain the infection locally. Previously, we demonstrated that during severe sepsis there is a marked failure of neutrophil migration to the infection site, which contributes to dissemination of infection, resulting in high mortality. IL-17 plays an important role in neutrophil recruitment. Herein, we investigated the role of IL-17R signaling in polymicrobial sepsis induced by cecal ligation and puncture (CLP). It was observed that IL-17R-deficient mice, subjected to CLP-induced non-severe sepsis, show reduced neutrophil recruitment into the peritoneal cavity, spread of infection, and increased systemic inflammatory response as compared with C57BL/6 littermates. As a consequence, the mice showed an increased mortality rate. The ability of IL-17 to induce neutrophil migration was demonstrated in vivo and in vitro. Beside its role in neutrophil recruitment to the infection focus, IL-17 enhanced the microbicidal activity of the migrating neutrophils by a mechanism dependent on NO. Therefore, IL-17 plays a critical role in host protection during polymicrobial sepsis. The Journal of Immunology, 2009, 182: 7846-7854.