19 resultados para Numerical One-Loop Integration


Relevância:

30.00% 30.00%

Publicador:

Resumo:

MCNP has stood so far as one of the main Monte Carlo radiation transport codes. Its use, as any other Monte Carlo based code, has increased as computers perform calculations faster and become more affordable along time. However, the use of Monte Carlo method to tally events in volumes which represent a small fraction of the whole system may turn to be unfeasible, if a straight analogue transport procedure (no use of variance reduction techniques) is employed and precise results are demanded. Calculations of reaction rates in activation foils placed in critical systems turn to be one of the mentioned cases. The present work takes advantage of the fixed source representation from MCNP to perform the above mentioned task in a more effective sampling way (characterizing neutron population in the vicinity of the tallying region and using it in a geometric reduced coupled simulation). An extended analysis of source dependent parameters is studied in order to understand their influence on simulation performance and on validity of results. Although discrepant results have been observed for small enveloping regions, the procedure presents itself as very efficient, giving adequate and precise results in shorter times than the standard analogue procedure. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic properties of nanocrystalline NiFe(2)O(4) spinel mechanically processed for 350 h have been studied using temperature dependent from both zero-field and in-field (57)Fe Mossbauer spectrometry and magnetization measurements. The hyperfine structure allows us to distinguish two main magnetic contributions: one attributed to the crystalline grain core, which has magnetic properties similar to the NiFe(2)O(4) spinel-like structure (n-NiFe(2)O(4)) and the other one due to the disordered grain boundary region, which presents topological and chemical disorder features(d-NiFe(2)O(4)). Mossbauer spectrometry determines a large fraction for the d-NiFe(2)O(4) region(62% of total area) and also suggests a speromagnet-like structure for it. Under applied magnetic field, the n-NiFe(2)O(4) spins are canted with angle dependent on the applied field magnitude. Mossbauer data also show that even under 120 kOe no magnetic saturation is observed for the two magnetic phases. In addition, the hysteresis loops, recorded for scan field of 50 kOe, are shifted in both field and magnetization axes, for temperatures below about 50 K. The hysteresis loop shifts may be due to two main contributions: the exchange bias field at the d-NiFe(2)O(4)/n-NiFe(2)O(4) interfaces and the minor loop effect caused by a high magnetic anisotropy of the d-NiFe(2)O(4) phase. It has also been shown that the spin configuration of the spin-glass like phase is modified by the consecutive field cycles, consequently the n-NiFe(2)O(4)/d-NiFe(2)O(4) magnetic interaction is also affected in this process. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, we present an analytical direct method, based on a Numerov three-point scheme, which is sixth order accurate and has a linear execution time on the grid dimension, to solve the discrete one-dimensional Poisson equation with Dirichlet boundary conditions. Our results should improve numerical codes used mainly in self-consistent calculations in solid state physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work an efficient third order non-linear finite difference scheme for solving adaptively hyperbolic systems of one-dimensional conservation laws is developed. The method is based oil applying to the solution of the differential equation an interpolating wavelet transform at each time step, generating a multilevel representation for the solution, which is thresholded and a sparse point representation is generated. The numerical fluxes obtained by a Lax-Friedrichs flux splitting are evaluated oil the sparse grid by an essentially non-oscillatory (ENO) approximation, which chooses the locally smoothest stencil among all the possibilities for each point of the sparse grid. The time evolution of the differential operator is done on this sparse representation by a total variation diminishing (TVD) Runge-Kutta method. Four classical examples of initial value problems for the Euler equations of gas dynamics are accurately solved and their sparse solutions are analyzed with respect to the threshold parameters, confirming the efficiency of the wavelet transform as an adaptive grid generation technique. (C) 2008 IMACS. Published by Elsevier B.V. All rights reserved.