118 resultados para Nuclear excitation.
Resumo:
Background: The common vampire bat Desmodus rotundus is an excellent model organism for studying ecological vicariance in the Neotropics due to its broad geographic range and its preference for forested areas as roosting sites. With the objective of testing for Pleistocene ecological vicariance, we sequenced a mitocondrial DNA (mtDNA) marker and two nuclear markers (RAG2 and DRB) to try to understand how Pleistocene glaciations affected the distribution of intraspecific lineages in this bat. Results: Five reciprocally monophyletic clades were evident in the mitochondrial gene tree, and in most cases with high bootstrap support: Central America (CA), Amazon and Cerrado (AMC), Pantanal (PAN), Northern Atlantic Forest (NAF) and Southern Atlantic Forest (SAF). The Atlantic forest clades formed a monophyletic clade with high bootstrap support, creating an east/west division for this species in South America. On the one hand, all coalescent and non-coalescent estimates point to a Pleistocene time of divergence between the clades. On the other hand, the nuclear markers showed extensive sharing of haplotypes between distant localities, a result compatible with male-biased gene flow. In order to test if the disparity between the mitochondrial and nuclear markers was due to the difference in mutation rate and effective size, we performed a coalescent simulation to examine the feasibility that, given the time of separation between the observed lineages, even with a gene flow rate close to zero, there would not be reciprocal monophyly for a neutral nuclear marker. We used the observed values of theta and an estimated mutation rate for the nuclear marker gene to perform 1000 iterations of the simulation. The results of this simulation were inconclusive: the number of iterations with and without reciprocal monophyly of one or more clades are similar. Conclusions: We therefore conclude that the pattern exhibited by the common vampire bat, with marked geographical structure for a mitochondrial marker and no phylogeographic structure for nuclear markers is compatible with a historical scenario of complete isolation of refuge-like populations during the Pleistocene. The results on demographic history on this species is compatible with the Carnaval-Moritz model of Pleistocene vicariance, with demographic expansions in the southern Atlantic forest.
Resumo:
The attenuation of. mesons in cold nuclear matter has been investigated via the time-dependent multiple-scattering Monte Carlo multicollisional (MCMC) intranuclear cascade model. The inelastic. width deduced from CBELSA/TAPS Collaboration data of meson transparency in complex nuclei (Gamma* similar or equal to 30 MeV/c(2)) is approximately 5 times lower than the value obtained with recent theoretical models and consistent with an in-medium total omega N cross section within 25-30 mb for an average meson momentum of 1.1 GeV/c. The momentum-dependent transparency ratios suggest an elastic/total cross-section ratio around 40%. For the case of CLAS Collaboration data a much higher width is deduced (Gamma* greater than or similar to 120 MeV/c(2)), with the MCMC model providing a consistent interpretation of the data, assuming a much higher meson absorption (sigma(omega N)* greater than or similar to 100 mb) for p(omega) similar to 1.7 GeV/c.
Resumo:
The mechanism of incoherent pi(0) and eta photoproduction from complex nuclei is investigated from 4 to 12 GeV with an extended version of the multicollisional Monte Carlo (MCMC) intranuclear cascade model. The calculations take into account the elementary photoproduction amplitudes via a Regge model and the nuclear effects of photon shadowing, Pauli blocking, and meson-nucleus final-state interactions. The results for pi(0) photoproduction reproduced for the first time the magnitude and energy dependence of the measured rations sigma(gamma A)/sigma(gamma N) for several nuclei (Be, C, Al, Cu, Ag, and Pb) from a Cornell experiment. The results for eta photoproduction fitted the inelastic background in Cornell's yields remarkably well, which is clearly not isotropic as previously considered in Cornell's analysis. With this constraint for the background, the eta -> gamma gamma. decay width was extracted using the Primakoff method, combining Be and Cu data [Gamma(eta ->gamma gamma) = 0.476(62) keV] and using Be data only [Gamma(eta ->gamma gamma) = 0.512(90) keV]; where the errors are only statistical. These results are in sharp contrast (similar to 50-60%) with the value reported by the Cornell group [Gamma(eta ->gamma gamma). = 0.324(46) keV] and in line with the Particle Data Group average of 0.510(26) keV.
Resumo:
We present measurements of J/psi yields in d + Au collisions at root S(NN) = 200 GeV recorded by the PHENIX experiment and compare them with yields in p + p collisions at the same energy per nucleon-nucleon collision. The measurements cover a large kinematic range in J/psi rapidity (-2.2 < y < 2.4) with high statistical precision and are compared with two theoretical models: one with nuclear shadowing combined with final state breakup and one with coherent gluon saturation effects. In order to remove model dependent systematic uncertainties we also compare the data to a simple geometric model. The forward rapidity data are inconsistent with nuclear modifications that are linear or exponential in the density weighted longitudinal thickness, such as those from the final state breakup of the bound state.
Resumo:
The PHENIX experiment at the Relativistic Heavy Ion Collider has performed systematic measurements of phi meson production in the K(+)K(-) decay channel at midrapidity in p + p, d + Au, Cu + Cu, and Au + Au collisions at root s(NN) = 200 GeV. Results are presented on the phi invariant yield and the nuclear modification factor R(AA) for Au + Au and Cu + Cu, and R(dA) for d + Au collisions, studied as a function of transverse momentum (1 < p(T) < 7 GeV/c) and centrality. In central and midcentral Au + Au collisions, the R(AA) of phi exhibits a suppression relative to expectations from binary scaled p + p results. The amount of suppression is smaller than that of the pi(0) and the. in the intermediate p(T) range (2-5 GeV/c), whereas, at higher p(T), the phi, pi(0), and. show similar suppression. The baryon (proton and antiproton) excess observed in central Au + Au collisions at intermediate p(T) is not observed for the phi meson despite the similar masses of the proton and the phi. This suggests that the excess is linked to the number of valence quarks in the hadron rather than its mass. The difference gradually disappears with decreasing centrality, and, for peripheral collisions, the R(AA) values for both particle species are consistent with binary scaling. Cu + Cu collisions show the same yield and suppression as Au + Au collisions for the same number of N(part). The R(dA) of phi shows no evidence for cold nuclear effects within uncertainties.
Resumo:
The solvent effects on the low-lying absorption spectrum and on the (15)N chemical shielding of pyrimidine in water are calculated using the combined and sequential Monte Carlo simulation and quantum mechanical calculations. Special attention is devoted to the solute polarization. This is included by an iterative procedure previously developed where the solute is electrostatically equilibrated with the solvent. In addition, we verify the simple yet unexplored alternative of combining the polarizable continuum model (PCM) and the hybrid QM/MM method. We use PCM to obtain the average solute polarization and include this in the MM part of the sequential QM/MM methodology, PCM-MM/QM. These procedures are compared and further used in the discrete and the explicit solvent models. The use of the PCM polarization implemented in the MM part seems to generate a very good description of the average solute polarization leading to very good results for the n-pi* excitation energy and the (15)N nuclear chemical shield of pyrimidine in aqueous environment. The best results obtained here using the solute pyrimidine surrounded by 28 explicit water molecules embedded in the electrostatic field of the remaining 472 molecules give the statistically converged values for the low lying n-pi* absorption transition in water of 36 900 +/- 100 (PCM polarization) and 36 950 +/- 100 cm(-1) (iterative polarization), in excellent agreement among one another and with the experimental value observed with a band maximum at 36 900 cm(-1). For the nuclear shielding (15)N the corresponding gas-water chemical shift obtained using the solute pyrimidine surrounded by 9 explicit water molecules embedded in the electrostatic field of the remaining 491 molecules give the statistically converged values of 24.4 +/- 0.8 and 28.5 +/- 0.8 ppm, compared with the inferred experimental value of 19 +/- 2 ppm. Considering the simplicity of the PCM over the iterative polarization this is an important aspect and the computational savings point to the possibility of dealing with larger solute molecules. This PCM-MM/QM approach reconciles the simplicity of the PCM model with the reliability of the combined QM/MM approaches.
Resumo:
The nuclear isotropic shielding constants sigma((17)O) and sigma((13)C) of the carbonyl bond of acetone in water at supercritical (P=340.2 atm and T=673 K) and normal water conditions have been studied theoretically using Monte Carlo simulation and quantum mechanics calculations based on the B3LYP/6-311++G(2d,2p) method. Statistically uncorrelated configurations have been obtained from Monte Carlo simulations with unpolarized and in-solution polarized solute. The results show that solvent effects on the shielding constants have a significant contribution of the electrostatic interactions and that quantitative estimates for solvent shifts of shielding constants can be obtained modeling the water molecules by point charges (electrostatic embedding). In supercritical water, there is a decrease in the magnitude of sigma((13)C) but a sizable increase in the magnitude of sigma((17)O) when compared with the results obtained in normal water. It is found that the influence of the solute polarization is mild in the supercritical regime but it is particularly important for sigma((17)O) in normal water and its shielding effect reflects the increase in the average number of hydrogen bonds between acetone and water. Changing the solvent environment from normal to supercritical water condition, the B3LYP/6-311++G(2d,2p) calculations on the statistically uncorrelated configurations sampled from the Monte Carlo simulation give a (13)C chemical shift of 11.7 +/- 0.6 ppm for polarized acetone in good agreement with the experimentally inferred result of 9-11 ppm. (C) 2008 American Institute of Physics.
Resumo:
We present a new analysis of J/psi production yields in deuteron-gold collisions at root s(NN) =200 GeV using data taken from the PHENIX experiment in 2003 and previously published in S. S. Adler [Phys. Rev. Lett 96, 012304 (2006)]. The high statistics proton-proton J/psi data taken in 2005 are used to improve the baseline measurement and thus construct updated cold nuclear matter modification factors (R(dAu)). A suppression of J/psi in cold nuclear matter is observed as one goes forward in rapidity (in the deuteron-going direction), corresponding to a region more sensitive to initial-state low-x gluons in the gold nucleus. The measured nuclear modification factors are compared to theoretical calculations of nuclear shadowing to which a J/psi (or precursor) breakup cross section is added. Breakup cross sections of sigma(breakup)=2.8(-1.4)(+1.7) (2.2(-1.5)(+1.6)) mb are obtained by fitting these calculations to the data using two different models of nuclear shadowing. These breakup cross-section values are consistent within large uncertainties with the 4.2 +/- 0.5 mb determined at lower collision energies. Projecting this range of cold nuclear matter effects to copper-copper and gold-gold collisions reveals that the current constraints are not sufficient to firmly quantify the additional hot nuclear matter effect.
Resumo:
We discuss the derivation of an equivalent polarization potential independent of angular momentum l for use in the optical Schrodinger equation that describes the elastic scattering of heavy ions. Three different methods are used for this purpose. Application of our theory to the low energy scattering of light heavy-ion systems at near-barrier energies is made. It is found that the notion of an l-independent polarization potential has some validity but cannot be a good substitute for the l-dependent local equivalent Feshbach polarization potential.
Resumo:
The STAR Collaboration at the Relativistic Heavy Ion Collider presents a systematic study of high-transverse-momentum charged-di-hadron correlations at small azimuthal pair separation Delta phi in d+Au and central Au+Au collisions at s(NN)=200 GeV. Significant correlated yield for pairs with large longitudinal separation Delta eta is observed in central Au+Au collisions, in contrast to d+Au collisions. The associated yield distribution in Delta eta x Delta phi can be decomposed into a narrow jet-like peak at small angular separation which has a similar shape to that found in d+Au collisions, and a component that is narrow in Delta phi and depends only weakly on Delta eta, the ""ridge."" Using two systematically independent determinations of the background normalization and shape, finite ridge yield is found to persist for trigger p(t)>6 GeV/c, indicating that it is correlated with jet production. The transverse-momentum spectrum of hadrons comprising the ridge is found to be similar to that of bulk particle production in the measured range (2 < p(t)< 4 GeV/c).
Resumo:
Fusion cross sections were measured for the exotic proton-halo nucleus (8)B incident on a (58)Ni target at several energies near the Coulomb barrier. This is the first experiment to report on the fusion of a protonhalo nucleus. The resulting excitation function shows a striking enhancement with respect to expectations for normal projectiles. Evidence is presented that the sum of the fusion and breakup yields saturates the total reaction cross section.
Resumo:
Excitation functions of quasi-elastic scattering at backward angles have been measured for the (6,7)Li + (144)Sm systems at near-barrier energies, and fusion barrier distributions have been extracted from the first derivatives of the experimental cross sections with respect to the bombarding energies. The data have been analyzed in the framework of continuum discretized coupled-channel calculations, and the results have been obtained in terms of the influence exerted by the inclusion of different reaction channels, with emphasis on the role played by the projectile breakup.
Resumo:
High-precision data of backward-angle elastic and quasielastic scattering for the weakly bound (6)Li projectile on (144)Sm target at deep-sub-barrier, near-, and above-barrier energies were measured. From the deep-sub-barrier data, the surface diffuseness of the nuclear interacting potential was studied. Barrier distributions were extracted from the first derivatives of the elastic and quasielastic excitation functions. It is shown that sequential breakup through the first resonant state of the (6)Li is an important channel to be included in coupled-channels calculations, even at deep-sub-barrier energies.
Resumo:
Precise quasielastic and alpha-transfer excitation functions, at theta(lab) = 161 degrees, have been measured at energies near the Coulomb barrier for the (16)O + (63)Cu system. This is the first time reported quasielastic barrier distribution for a medium odd-A nucleus target deduced from the data. Additional elastic scattering angular distributions data available in the literature for this system were also used in the investigation of the role of several individual channels in the reaction dynamics, by comparing the data with free-parameter coupled-channels calculations. In order to do so, the nucleus-nucleus bare potential has a double-folding potential as the real component and only a very short-range imaginary potential. The quasielastic barrier distribution has been shown to be a powerful tool in this analysis at the barrier region. A high collectivity of the (63)Cu was observed, mainly due to the strong influence of its 5/2-and 7/2-states on all reaction channels investigated. A striking influence of the reorientation of the ground-state target-spin on the elastic cross sections, taken at backward angles, was also observed.
Resumo:
Multispectral widefield optical imaging has the potential to improve early detection of oral cancer. The appropriate selection of illumination and collection conditions is required to maximize diagnostic ability. The goals of this study were to (i) evaluate image contrast between oral cancer/precancer and non-neoplastic mucosa for a variety of imaging modalities and illumination/collection conditions, and (ii) use classification algorithms to evaluate and compare the diagnostic utility of these modalities to discriminate cancers and precancers from normal tissue. Narrowband reflectance, autofluorescence, and polarized reflectance images were obtained from 61 patients and 11 normal volunteers. Image contrast was compared to identify modalities and conditions yielding greatest contrast. Image features were extracted and used to train and evaluate classification algorithms to discriminate tissue as non-neoplastic, dysplastic, or cancer; results were compared to histologic diagnosis. Autofluorescence imaging at 405-nm excitation provided the greatest image contrast, and the ratio of red-to-green fluorescence intensity computed from these images provided the best classification of dysplasia/cancer versus non-neoplastic tissue. A sensitivity of 100% and a specificity of 85% were achieved in the validation set. Multispectral widefield images can accurately distinguish neoplastic and non-neoplastic tissue; however, the ability to separate precancerous lesions from cancers with this technique was limited. (C) 2010 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3516593]