17 resultados para Ni based catalysts
Resumo:
The performance of La((1-y))Sr(y)Ni(x)Co((1-x))O(3) perovskites for the water gas shift reaction (WGSR) was investigated. The samples were prepared by the co- precipitation method and were performed by the BET method, XRD, TPR, and XPS. The catalytic tests were performed at 300 and 400 A degrees C and H(2)O(v)/CO = 2.3/1 (molar ratio). The sample with the highest surface area is La(0.70)Sr(0.30)NiO(3). The XRD results showed the formation of perovskite structure for all samples, and the La(0.70)Sr(0.30)NiO(3) sample also presented peaks corresponding to La(2)NiO(4) and NiO, indicating that the solubility limit of Sr in the perovskite lattice was surpassed. The replacement of Co by Ni favored the reduction of the species at lower temperatures, and the sample containing Sr presented the highest amount of reducible species, as identified by TPR results. All samples were active, the Sr containing perovskite appearing the most active due to the highest surface area, presence of the La(2)NiO(4) phase, and higher content of Cu in the surface, as detected by XPS. Among the samples containing Co, the most active one was that with x = 0.70 (60% of CO conversion).
Resumo:
Catalyst precursors composed of Ni/Mg/Al oxides with added La and Ce were tested in ethanol steam reforming (ESR) reactions. La and Ce were added by anion-exchange. The oxides were characterized by X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge structure (XANES) analysis. The catalyst precursors consist of a mixture of oxides, with the nickel in the form of NiO strongly interacting with the support Mg/Al. The XPS analysis showed a lanthanum-support interaction, but no interaction of Ce species with the support. The reaction data obtained with the active catalysts showed that the addition of Ce and La resulted in better H(2) production at 550 degrees C. The CeNi catalyst provided the higher ethanol conversion, with lower acetaldehyde production, possibly clue to a favoring of water adsorption on the weakly interacting clusters of CeO(2) on the surface. (C) 2010 Elsevier B.V. All rights reserved.