94 resultados para Movement Pattern
Resumo:
Objective: To evaluate the effects of local administration of epidermal growth factor (EGF) located within liposomes on recruitment of osteoclasts during mechanical force in rats. Materials and Methods: An orthodontic elastic band was inserted between the left upper first and second molars, to move mesially the first molar. Rats were randomly divided into 4 groups (n = 8): EGF (2 ng/mu L) located within liposomes (group 1), liposomes only (group 2), soluble EGF (2 ng/mu L; group 3), or vehicle alone (group 4). The solutions were injected into the region of the root furcation of the left first molar after elastic band insertion. Tooth movement was measured using a plaster model of the maxilla, and the number of osteoclasts recruited at the pressure side of the first molar was histologically evaluated. Results: Intergroup analysis showed that there was no significant difference between group 2 and group 4 (P >.05) and between group 1 and group 3 (P >.05). However, group 1 and group 3 exhibited greater differences in tooth movement than group 2 and group 4 (P <.05). On the other hand, group 1 showed greater tooth movement than groups 2 and 4 with statistical significance (P <.01). The increase in the number of osteoclasts in group 1 was significantly higher than in the other groups (P <.05). Conclusion: Exogenous EGF-liposome administration has an additive effect when compared with soluble EGF on the rate of osteoclast recruitment, producing faster bone resorption and tooth movement.
Resumo:
Background: Mucin immunoexpression in adenocarcinoma arising in Barrett's esophagus (BE) may indicate the carcinogenesis pathway. The aim of this study was to evaluate resected specimens of adenocarcinoma in BE for the pattern of mucins and to correlate to the histologic classification. Methods: Specimens were retrospectively collected from thirteen patients who underwent esophageal resection due to adenocarcinoma in BE. Sections were scored for the grade of intestinal metaplasia. The tissues were examined by immunohistochemistry for MUC2 and MUC5AC antibodies. Results: Eleven patients were men. The mean age was 61 years old (varied from 40 to 75 years old). The tumor size had a mean of 4.7 +/- 2.3 cm, and the extension of BE had a mean of 7.7 +/- 1.5 cm. Specialized epithelium with intestinal metaplasia was present in all adjacent mucosas. Immunohistochemistry for MUC2 showed immunoreactivity in goblet cells, while MUC5AC was extensively expressed in the columnar gastric cells, localizing to the surface epithelium and extending to a variable degree into the glandular structures in BE. Tumors were classified according to the mucins in gastric type in 7/13 (MUC5AC positive) and intestinal type in 4/13 (MUC2 positive). Two tumors did not express MUC2 or MUC5AC proteins. The pattern of mucin predominantly expressed in the adjacent epithelium was associated to the mucin expression profile in the tumors, p = 0.047. Conclusion: Barrett's esophagus adenocarcinoma shows either gastric or intestinal type pattern of mucin expression. The two types of tumors developed in Barrett's esophagus may reflect the original cell type involved in the malignant transformation.
Resumo:
Background: While microRNAs (miRNAs) play important roles in tissue differentiation and in maintaining basal physiology, little is known about the miRNA expression levels in stomach tissue. Alterations in the miRNA profile can lead to cell deregulation, which can induce neoplasia. Methodology/Principal Findings: A small RNA library of stomach tissue was sequenced using high-throughput SOLiD sequencing technology. We obtained 261,274 quality reads with perfect matches to the human miRnome, and 42% of known miRNAs were identified. Digital Gene Expression profiling (DGE) was performed based on read abundance and showed that fifteen miRNAs were highly expressed in gastric tissue. Subsequently, the expression of these miRNAs was validated in 10 healthy individuals by RT-PCR showed a significant correlation of 83.97% (P<0.05). Six miRNAs showed a low variable pattern of expression (miR-29b, miR-29c, miR-19b, miR-31, miR-148a, miR-451) and could be considered part of the expression pattern of the healthy gastric tissue. Conclusions/Significance: This study aimed to validate normal miRNA profiles of human gastric tissue to establish a reference profile for healthy individuals. Determining the regulatory processes acting in the stomach will be important in the fight against gastric cancer, which is the second-leading cause of cancer mortality worldwide.
Resumo:
Objective: To determine if the magnitude of the force used to induce incisor tooth movement promotes distinct activation in cells in the central amygdala (CEA) and lateral hypothalamus (LH) of rats. Also, the effect of morphine on Fos immunoreactivity (Fos-IR) was investigated in these nuclei. Materials and Methods: Adult male rats were anesthetized and divided into six groups: only anesthetized (control), without orthodontic appliance (OA), OA but without force, OA activated with 30g or 70g, OA with 70g in animals pretreated with morphine (2 mg/kg, intraperitoneal). Three hours after the onset of the experiment the rats were reanesthetized and perfused with 4% paraformaldehyde. The brains were removed and fixed, and sections containing CEA and LH were processed for Fos protein immunohistochemistry. Results: The results show that in the control group, the intramuscular injection of a ketamine/xylazine mixture did not induce Fos-IR cells in the CEA or in the LH. Again, the without force group showed a little Fos-IR. However, in the 70g group the Fos-IR was the biggest observed (P < .05, Tukey) in the CEA and LH compared with the other groups. In the 30g group, the Fos-IR did not differ from the control group, the without OA group, and the without force group. Furthermore, pretreatment with morphine in the 70g group reduced Fos-IR in these regions. Conclusions: Tooth movement promotes Fos-IR in the CEA and LH according to the magnitude of the force applied. (Angle Orthod. 2010;80:111-115.)
Resumo:
Objectives: To describe the microscopic pulpal reactions resulting from orthodontically induced tooth movement associated with low-level laser therapy (LLLT) in rats. Materials and Methods: Forty-five young male Wistar rats were randomly assigned to three groups. In group I (n = 20), the maxillary right first molars were submitted to orthodontic movement with placement of a coil spring. In group II (n = 20), the teeth were submitted to orthodontic movement plus LLLT at 4 seconds per point (buccal, palatal, and mesial) with a GaAlAs diode laser source (830 nm, 100 mW, 18 J/cm(2)). Group III (n = 5) served as a control (no orthodontic movement or LLLT). Groups I and 11 were divided into four subgroups according to the time elapsed between the start of tooth movement and sacrifice (12 hours, 24 hours, 3 days, and 7 days). Results: Up until the 3-day period, the specimens in group I presented a thicker odontoblastic layer, no cell-free zone of Weil, pulp core with differentiated mesenchymal and defense cells, and a high concentration of blood vessels. In group II, at the 12- and 24-hour time points, the odontoblastic layer was disorganized and the cell-free zone of Weil was absent, presenting undifferentiated cells, intensive vascularization with congested capillaries, and scarce defense cells in the cell-rich zone. In groups I and II, pulpal responses to the stimuli were more intense in the area underneath the region of application of the force or force/laser. Conclusions: The orthodontic-induced tooth movement and LLLT association showed reversible hyperemia as a tissue response to the stimulus. LLLT leads to a faster repair of the pulpal tissue due to orthodontic movement. (Angle Orthod. 2010;80:116-122.)
Resumo:
Complicated patterns showing various spatial scales have been obtained in the past by coupling Turing systems in such a way that the scales of the independent systems resonate. This produces superimposed patterns with different length scales. Here we propose a model consisting of two identical reaction-diffusion systems coupled together in such a way that one of them produces a simple Turing pattern of spots or stripes, and the other traveling wave fronts that eventually become stationary. The basic idea is to assume that one of the systems becomes fixed after some time and serves as a source of morphogens for the other system. This mechanism produces patterns very similar to the pigmentation patterns observed in different species of stingrays and other fishes. The biological mechanisms that support the realization of this model are discussed.
Resumo:
For Au + Au collisions at 200 GeV, we measure neutral pion production with good statistics for transverse momentum, p(T), up to 20 GeV/c. A fivefold suppression is found, which is essentially constant for 5 < p(T) < 20 GeV/c. Experimental uncertainties are small enough to constrain any model-dependent parametrization for the transport coefficient of the medium, e. g., <(q) over cap > in the parton quenching model. The spectral shape is similar for all collision classes, and the suppression does not saturate in Au + Au collisions.
Resumo:
More than 2 years after undergoing anterior cruciate ligament (ACL) reconstruction, women still present bilateral asymmetries during multijoint movement tasks. Given the well-known ACL-injury gender bias, the goal of this study was to investigate whether males also present such asymmetries more than 2 years after undergoing ACL reconstruction. This study involved 12 participants submitted to ACL reconstruction in the ACL group and 17 healthy participants in the control group. The mean postoperative period was 37 months. The participants executed bilateral countermovement jumps and load squat tasks. The kinematics and ground reaction forces on each lower limb and pelvis were recorded, and used to compute bilateral peak vertical ground reaction forces, peak knee and hip joint powers in the sagittal plane, and the ratio between these powers. For the jump task, the groups had the same performance in the jump height, but for the ACL group the peak knee joint power on the operated side was 13% lower than on the non-operated side (p = 0.02). For the squat task, the hip-knee joint power ratio on the operated side of the ACL group was 31% greater than on the non-operated side (p = 0.02). The ACL group presented a deficit in the operated knee that had its energy generation over time (joint power) partially substituted by the hip joint power of the same side. The fact that, even after more than 2 years following the ACL reconstruction and returning to regular activity, the ACL group still had neuromuscular asymmetries suggests a need for improvement in the ACL reconstruction surgery procedures and/or rehabilitation protocols.
Resumo:
Brennecke, A, Guimaraees, TM, Leone, R, Cadarci, M, Mochizuki, L, Simao, R, Amadio, AC, and Serrao, J. Neuromuscular activity during bench press exercise performed with and without the preexhaustion method. J Strength Cond Res 23(7): 1933-1940, 2009-The purpose of the present study was to investigate the effects of exercise order on the tonic and phasic characteristics of upper-body muscle activity during bench press exercise in trained subjects. The preexhaustion method involves working a muscle or a muscle group combining a single-joint exercise immediately followed by a multi-joint exercise (e. g., flying exercise followed by bench press exercise). Twelve subjects performed 1 set of bench press exercises with and without the preexhaustion method following 2 protocols (P1-flying before bench press; P2-bench press). Both exercises were performed at a load of 10 repetition maximum (10RM). Electromyography (EMG) sampled at 1 kHz was recorded from the pectoralis major (PM), anterior deltoid (DA), and triceps brachii (TB). Kinematic data (60 Hz) were synchronized to define upward and downward phases of exercise. No significant (p > 0.05) changes were seen in tonic control of PM and DA muscles between P1 and P2. However, TB tonic aspect of neurophysiologic behavior of motor units was significantly higher (p < 0.05) during P1. Moreover, phasic control of PM, DA, and TB muscles were not affected (p > 0.05). The kinematic pattern of movement changed as a result of muscular weakness in P1. Angular velocity of the right shoulder performed during the upward phase of the bench press exercise was significantly slower (p < 0.05) during P1. Our results suggest that the strategies set by the central nervous system to provide the performance required by the exercise are held constant throughout the exercise, but the tonic aspects of the central drive are increased so as to adapt to the progressive occurrence of the neuromuscular fatigue. Changes in tonic control as a result of the muscular weakness and fatigue can cause changes in movement techniques. These changes may be related to limited ability to control mechanical loads and mechanical energy transmission to joints and passive structures.
Resumo:
The aim of this study was to investigate the kinematic, kinetic, and electromyographic pattern before, during and after downward squatting when the trunk movement is restricted in the sagittal plane. Eight healthy subjects performed downward squatting at two different positions, semisquatting (40 degrees knee flexion) and half squatting (70 degrees knee flexion). Electromyographic responses of the vastus medialis oblique, vastus medialis longus, rectus femoris, vastus lateralis, biceps femoris, semitendineous, gastrocnemius lateralis, and tibialis anterior were recorded. The kinematics of the major joints were reconstructed using an optoelectronic system. The center of pressure (COP) was obtained using data collected from one force plate, and the ankle and knee joint torques were calculated using inverse dynamics. In the upright position there were small changes in the COP and in the knee and ankle joint torques. The tibialis anterior provoked the disruption of this upright position initiating the squat. During the acceleration phase of the squat the COP moved posteriorly, the knee joint torque remained in flexion and there was no measurable muscle activation. As the body went into the deceleration phase, the knee joint torque increased towards extension with major muscle activities being observed in the four heads of the quadriceps. Understanding these kinematic, kinetic and EMG strategies before, during and after the squat is expected to be beneficial to practitioners for utilizing squatting as a task for improving motor function. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Ide, BN, Leme, TCF, Lopes, CR, Moreira, A, Dechechi, CJ, Sarraipa, MF, da Mota, GR, Brenzikofer, R, and Macedo, DV. Time course of strength and power recovery after resistance training with different movement velocities. J Strength Cond Res 25(7): 2025-2033, 2011-The purpose of this study was to evaluate the time course of strength and power recovery after a single bout of strength training designed with fast and slow contraction velocities. Nineteen male subjects were randomly divided into 2 groups: the slow-velocity contraction (SV) group and the fast velocity contraction (FV) group. Resistance training protocols consisted of 5 sets of 12 repetition maximum (5 x 12RM) with 50 seconds of rest between sets and 2 minutes between exercises. Contraction velocity was controlled by the execution time for each repetition (SV-6 seconds to complete concentric and eccentric phases and for FV-1.5 seconds). Leg Press 45 degrees 1RM (LP 1RM), horizontal countermovement jump (HCMJ), and right thigh circumference (TC) were accessed in 6 distinct moments: base (1 week before exercise), 0 (immediately after exercises), 24, 48, 72, and 96 hours after exercise protocol. The SV and FV presented significant LP 1RM decrements at 0, and these were still evident 24-48 hours postexercise. The magnitude of decline was significantly (p<0.05) higher for FV. The SV and FV presented significant HCMJ decrements at 0, but only for FV were these still evident 24-72 hours postexercise. The SV and FV presented significant TC increments at 0, and these were still evident 24-48 hours postexercise for SV but for FV it continued up to 96 hours. The magnitude of increase was significantly (p<0.05) higher for FV. In conclusion, the fast contraction velocity protocol resulted in greater decreases in LP 1RM and HCMJ performance, when compared with slow velocity. The results lead us to interpret that this variable may exert direct influence on acute muscle strength and power generation capacity.
Resumo:
Self controlling practice implies a process of decision making which suggests that the options in a self controlled practice condition could affect learners The number of task components with no fixed position in a movement sequence may affect the (Nay learners self control their practice A 200 cm coincident timing track with 90 light emitting diodes (LEDs)-the first and the last LEDs being the warning and the target lights respectively was set so that the apparent speed of the light along the track was 1 33 m/sec Participants were required to touch six sensors sequentially the last one coincidently with the lighting of the tar get light (timing task) Group 1 (n=55) had only one constraint and were instructed to touch the sensors in any order except for the last sensor which had to be the one positioned close to the target light Group 2 (n=53) had three constraints the first two and the last sensor to be touched Both groups practiced the task until timing error was less than 30 msec on three consecutive trials There were no statistically significant differences between groups in the number of trials needed to reach the performance criterion but (a) participants in Group 2 created fewer sequences corn pared to Group 1 and (b) were more likely to use the same sequence throughout the learning process The number of options for a movement sequence affected the way learners self-controlled their practice but had no effect on the amount of practice to reach criterion performance.
Resumo:
This study analyzed inter-individual variability of the temporal structure applied in basketball throwing. Ten experienced male athletes in basketball throwing were filmed and a number of kinematic movement parameters analyzed. A biomechanical model provided the relative timing of the shoulder, elbow and wrist joint movements. Inter-individual variability was analyzed using sequencing and relative timing of tem phases of the throw. To compare the variability of the movement phases between subjects a discriminant analysis and an ANOVA were applied. The Tukey test was applied to determine where differences occurred. The significance level was p = 0.05. Inter-individual variability was explained by three concomitant factors: (a) a precision control strategy, (b) a velocity control strategy and (c) intrinsic characteristics of the subjects. Therefore, despite the fact that some actions are common to the basketball throwing pattern each performed demonstrated particular and individual characteristics.
Resumo:
Generally, quadriplegic individuals have difficulties performing object manipulation. Toward satisfactory manipulation, reach and grasp movements must be performed with voluntary control, and for that, grasp force feedback is essential. A hybrid system aiming at partial upper limb sensory-motor restoration for quadriplegics was built. Such device is composed of an elbow dynamic orthosis that provides elbow flexion/extension (range was approximately from 20 degrees to 120 degrees, and average angular speed was approximately 15 degrees/s) with forearm support, a wrist static orthosis and neuromuscular electrical stimulation for grasping generation, and a glove with force sensors that allows grasping force feedback. The glove presents two user interface modes: visual by light emitting diodes or audio emitted by buzzer. Voice control of the entire system (elbow dynamic orthosis and electrical stimulator) is performed by the patient. The movements provided by the hybrid system, combined with the scapular and shoulder movements performed by the patient, can aid quadriplegic individuals in tasks that involve reach and grasp movements.
Resumo:
This work deals with neural network (NN)-based gait pattern adaptation algorithms for an active lower-limb orthosis. Stable trajectories with different walking speeds are generated during an optimization process considering the zero-moment point (ZMP) criterion and the inverse dynamic of the orthosis-patient model. Additionally, a set of NNs is used to decrease the time-consuming analytical computation of the model and ZMP. The first NN approximates the inverse dynamics including the ZMP computation, while the second NN works in the optimization procedure, giving an adapted desired trajectory according to orthosis-patient interaction. This trajectory adaptation is added directly to the trajectory generator, also reproduced by a set of NNs. With this strategy, it is possible to adapt the trajectory during the walking cycle in an on-line procedure, instead of changing the trajectory parameter after each step. The dynamic model of the actual exoskeleton, with interaction forces included, is used to generate simulation results. Also, an experimental test is performed with an active ankle-foot orthosis, where the dynamic variables of this joint are replaced in the simulator by actual values provided by the device. It is shown that the final adapted trajectory follows the patient intention of increasing the walking speed, so changing the gait pattern. (C) Koninklijke Brill NV, Leiden, 2011