25 resultados para Mouse uterus
Resumo:
Purkinje cell degeneration (pcd) mice have a mutation within the gene encoding cytosolic carboxypeptidase 1 (CCP1/Nna1), which has homology to metallocarboxypeptidases. To assess the function of CCP1/Nna1, quantitative proteomics and peptidomics approaches were used to compare proteins and peptides in mutant and wild-type mice. Hundreds of peptides derived from cytosolic and mitochondrial proteins are greatly elevated in pcd mouse hypothalamus, amygdala, cortex, prefrontal cortex, and striatum. However, the major proteins detected on 2-D gel electrophoresis were present in mutant and wild-type mouse cortex and hypothalamus at comparable levels, and proteasome activity is normal in these brain regions of pcd mice, suggesting that the increase in cellular peptide levels in the pcd mice is due to reduced degradation of the peptides downstream of the proteasome. Both nondegenerating and degenerating regions of pcd mouse brain, but not wild-type mouse brain, show elevated autophagy, which can be triggered by a decrease in amino acid levels. Taken together with previous studies on CCP1/Nna1, these data suggest that CCP1/Nna1 plays a role in protein turnover by cleaving proteasome-generated peptides into amino acids and that decreased peptide turnover in the pcd mice leads to cell death.-Berezniuk, I., Sironi, J., Callaway, M. B., Castro, L. M., Hirata, I. Y., Ferro, E. S., Fricker, L. D. CCP1/Nna1 functions in protein turnover in mouse brain: Implications for cell death in Purkinje cell degeneration mice. FASEB J. 24, 1813-1823 (2010). www.fasebj.org
Resumo:
P>Many hemoglobin-derived peptides are present in mouse brain, and several of these have bioactive properties including the hemopressins, a related series of peptides that bind to cannabinoid CB1 receptors. Although hemoglobin is a major component of red blood cells, it is also present in neurons and glia. To examine whether the hemoglobin-derived peptides in brain are similar to those present in blood and heart, we used a peptidomics approach involving mass spectrometry. Many hemoglobin-derived peptides are found only in brain and not in blood, whereas all hemoglobin-derived peptides found in heart were also seen in blood. Thus, it is likely that the majority of the hemoglobin-derived peptides detected in brain are produced from brain hemoglobin and not erythrocytes. We also examined if the hemopressins and other major hemoglobin-derived peptides were regulated in the Cpefat/fat mouse; previously these mice were reported to have elevated levels of several hemoglobin-derived peptides. Many, but not all of the hemoglobin-derived peptides were elevated in several brain regions of the Cpefat/fat mouse. Taken together, these findings suggest that the post-translational processing of alpha and beta hemoglobin into the hemopressins, as well as other peptides, is up-regulated in some but not all Cpefat/fat mouse brain regions.
Resumo:
Quiescin Q6/sulfhydryl oxidases (QSOX) are revisited thiol oxidases considered to be involved in the oxidative protein folding, cell cycle control and extracellular matrix remodeling. They contain thioredoxin domains and introduce disulfide bonds into proteins and peptides, with the concomitant hydrogen peroxide formation, likely altering the redox environment. Since it is known that several developmental processes are regulated by the redox state, here we assessed if QSOX could have a role during mouse fetal development. For this purpose, an anti-recombinant mouse QSOX antibody was produced and characterized. In E-13.5, E-16.5 fetal tissues, QSOX immunostaining was confined to mesoderm- and ectoderm-derived tissues, while in P1 neonatal tissues it was slightly extended to some endoderm-derived tissues. QSOX expression, particularly by epithelial tissues, seemed to be developmentally-regulated, increasing with tissue maturation. QSOX was observed in loose connective tissues in all stages analyzed, intra and possibly extracellularly, in agreement with its putative role in oxidative folding and extracellular matrix remodeling. In conclusion, QSOX is expressed in several tissues during mouse development, but preferentially in those derived from mesoderm and ectoderm, suggesting it could be of relevance during developmental processes.
Resumo:
The incidence of melanoma is increasing worldwide. It is one of the leading cancers in pregnancy and the most common malignancy to metastasize to placenta and fetus. There are no publications about experimental models of melanoma and pregnancy. We propose a new experimental murine model to study the effects of melanoma on pregnancy and its metastatic process. We tested several doses of melanoma cells until we arrived at the optimal dose, which produced tumor growth and allowed animal survival to the end of pregnancy. Two control groups were used: control (C) and stress control (SC) and three different routes of inoculation: intravenous (IV), intraperitoneal (IP) and subcutaneous (SC). All the fetuses and placentas were examined macroscopically and microscopically. The results suggest that melanoma is a risk factor for intrauterine growth restriction but does not affect placental weight. When inoculated by the SC route, the tumor grew only in the site of implantation. The IP route produced peritoneal tumoral growth and also ovarian and uterine metastases in 60% of the cases. The IV route produced pulmonary tumors. No placental or fetal metastases were obtained, regardless of the inoculation route. The injection of melanoma cells by any route did not increase the rate of fetal resorptions. Surprisingly, animals in the IV groups had no resorptions and a significantly higher number of fetuses. This finding may indicate that tumoral factors released in the host organism to favor tumor survival may also have a pro-gestational action and consequently improve the reproductive performance of these animals.
Resumo:
A survey of existing data suggests that trophoblast cells produce factors involved in extracellular matrix degradation. In this study, we correlated the expression of cathepsins D and B in the murine ectoplacental cone with the ultrastructural progress of decidual invasion by trophoblast cells. Both proteases were immunolocalized at implantation sites in lysosome-endosome-like compartments of trophoblast giant cells. Cathepsin D, but not cathepsin B, was also detected ultrastructurally in extracellular compartments surrounded by processes of the invading trophoblast containing extracellular matrix components and endometrial cell debris. The expression of cathepsins D and B by trophoblast cells was confirmed by RT-PCR in ectoplacental cones isolated from implantation chambers at gestation day 7.5. Our data addressed a positive relationship between the expression and presence of cathepsin D at the extracellular compartment of the maternal-fetal interface and the invasiveness of the trophoblast during the postimplantation period, suggesting a participation of invading trophoblast cells in the cathepsin D release. Such findings indicate that mouse trophoblast cells might exhibit a proteolytic ability to partake in the decidual invasion process at the maternal-fetal interface. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Relaxing action of sodium nitroprusside (SNP) was significantly reduced in the stomach fundus of mice lacking the kinin B(1) receptor (B(1)(-/-)). Increased basal cGMP accumulation was correlated with attenuated SNP induced dose-dependent relaxation in B(1)(-/-) when compared with wild type (WT) control mice. These responses to SNP were completely blocked by the guanylate cyclase inhibitor ODQ(10 mu M). It was also found that Ca(2+)-dependent, constitutive nitric oxide synthase (cNOS) activity was unchanged but the Ca(2+)-independent inducible NOS (iNOS) activity was greater in B(1)(-/-) mice than in WT animals. Zaprinast (100 mu M), a specific phosphodiesterase inhibitor, increased the nitrergic relaxations and the accumulation of the basal as well as the SNP-stimulated cGMP in WT but not in B(1)(-/-) stomach fundus. From these findings it is concluded that the inhibited phosphodiesterase activity and high level of cGMP reduced the resting muscle tone, impairing the relaxant responses of the stomach in B(1)(-/-) mice. In addition, it can be suggested that functional B(2) receptor might be involved in the NO compensatory mechanism associated with the deficiency of kinin B(1) receptor in the gastric tissue of the transgenic mice. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Stings by Polistes wasps can cause life-threatening allergic reactions, pain and inflammation. We examined the changes in microvascular permeability and neutrophil influx caused by the venom of Polistes lanio a paper wasp found in southeastern Brazil. The intradermal injection of wasp venom caused long-lasting paw oedema and dose-dependently increased microvascular permeability in mouse dorsal skin. SR140333, an NK(1) receptor antagonist, markedly inhibited the response, but the NK(2) receptor antagonist SR48968 was ineffective. The oedema was reduced in capsaicin-treated rats, indicating a direct activation of sensory fibres. Dialysis of the venom partially reduced the oedema and the remaining response was further inhibited by SR140333. Mass spectrometric analysis of the venom revealed two peptides (QPPTPPEHRFPGLM and ASEPTALGLPRIFPGLM) with sequence similarities to the C-terminal region of tachykinin-like peptides found in Phoneutria nigniventer spider venom and vertebrates. Wasp venom failed to release histamine from mast cells in vitro and spectrofluorometric assay of the venom revealed a negligible content of histamine in the usual dose of P.l. lanio venom (1 nmol of histamine/7 mu g of venom)that was removed by dialysis. The histamine H(1) receptor antagonist pyrilamine, but not bradykinin B(1) or B(2) receptor antagonists, inhibited venom-induced oedema. In conclusion, P. l. lanio venom induces potent oedema and increases vascular permeability in mice, primarily through activation of tachykinin NK(1) receptors by substance P released from sensory C fibres, which in turn releases histamine from dermal mast cells. This is the first description of a neurovascular mechanism for P. l. lanio venom-mediated inflammation. The extent to which the two tachykinin-like peptides identified here contribute to this neurogenic inflammatory response remains to be elucidated. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Previous studies showed anabolic effects of GC-1, a triiodothyronine (T3) analogue that is selective for both binding and activation functions of thyroid hormone receptor (TR) beta 1 over TR alpha 1, on bone tissue in vivo. The aim of this study was to investigate the responsiveness of rat (ROS17/2.8) and mouse (MC3T3-E1) osteoblast-like cells to GC-1. As expected, T3 inhibited cellular proliferation and stimulated mRNA expression of osteocalcin or alkaline phosphatase in both cell lineages. Whereas equimolar doses of T3 and GC-1 equally affected these parameters in ROS17/2.8 cells, the effects of GC-1 were more modest compared to those of T3 in MC3T3-E1 cells. Interestingly, we showed that there is higher expression of TR alpha 1 than TR beta 1 mRNA in rat (similar to 20-90%) and mouse (similar to 90-98%) cell lineages and that this difference is even higher in mouse cells, which highlights the importance of TR alpha 1 to bone physiology and may partially explain the modest effects of GC-1 in comparison with T3 in MC3T3-E1 cells. Nevertheless, we showed that TR beta 1 mRNA expression increases (similar to 2.8- to 4.3-fold) as osteoblastic cells undergo maturation, suggesting a key role of TR beta 1 in mediating T3 effects in the bone forming cells, especially in mature osteoblasts. It is noteworthy that T3 and GC-1 induced TR beta 1 mRNA expression to a similar extent in both cell lineages (similar to 2- to 4-fold), indicating that both ligands may modulate the responsiveness of osteoblasts to T3. Taken together, these data show that TR beta selective T3 analogues have the potential to directly induce the differentiation and activity of osteoblasts.
Resumo:
The neurohypophyseal hormone arginine vasopressin (AVP) is a classic mitogen in many cells. In K-Ras-dependent mouse Y1 adrenocortical malignant cells, AVP elicits antagonistic responses such as the activation of the PKC and the ERK1/2 mitogenic pathways to down-regulate cyclin D1 gene expression, which induces senescence-associated beta-galactosidase (SA-beta Gal) and leads to cell cycle arrest. Here, we report that in the metabolic background of Y1 cells, PKC activation either by AVP or by PMA inhibits the PI3K/Akt pathway and stabilises the p27(Kip1) protein even in the presence of the mitogen fibroblast growth factor 2 (FGF2). These results suggest that p27(Kip1) is a critical signalling node in the mechanisms underlying the survival of the Y1 cells. In Y1 cells that transiently express wild-type p27(Kip1), AVP caused a severe reduction in cell survival, as shown by clonogenic assays. However, AVP promoted the survival of Y1 cells transiently expressing mutant p27-S10A or mutant p27-T187A, which cannot be phosphorylated at Ser10 and Thr187, respectively. In addition, PKC activation by PMA mimics the toxic effect caused by AVP in Y1 cells, and inhibition of PKC completely abolishes the effects caused by both PMA and AVP in clonogenic assays. The vulnerability of Y1 cells during PKC activation is a phenotype conditioned upon K-ras oncogene amplification because K-Ras down-regulation with an inducible form of the dominant-negative mutant H-RasN17 has resulted in Y1 cells that are resistant to AVP`s deleterious effects. These data show that the survival destabilisation of K-Ras-dependent Y1 malignant cells by AVP requires large quantities of the p27(Kip1) protein as well as phosphorylation of the p27(Kip1) protein at both Ser10 and Thr187. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
It has been postulated that noncoding RNAs (ncRNAs) are involved in the posttranscriptional control of gene expression, and may have contributed to the emergence of the complex attributes observed in mammalians. We show here that the complement of ncRNAs expressed from intronic regions of the human and mouse genomes comprises at least 78,147 and 39,660 transcriptional units, respectively. To identify conserved intronic sequences expressed in both humans and mice, we used custom-designed human cDNA microarrays to separately interrogate RNA from mouse and human liver, kidney, and prostate tissues. An overlapping tissue expression signature was detected for both species, comprising 198 transcripts; among these, 22 RNAs map to intronic regions with evidence of evolutionary conservation in humans and mice. Transcription of selected human-mouse intronic ncRNAs was confirmed using strand-specific RT-PCR. Altogether, these results support an evolutionarily conserved role of intronic ncRNAs in human and mouse, which are likely to be involved in the fine tuning of gene expression regulation in different mammalian tissues. (C) 2008 Elsevier Inc. All rights reserved.