18 resultados para Motifs


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shwachman-Bodian-Diamond syndrome is an autosomal recessive genetic syndrome with pleiotropic phenotypes, including pancreatic deficiencies, bone marrow dysfunctions with increased risk of myelodysplasia or leukemia, and skeletal abnormalities. This syndrome has been associated with mutations in the SBDS gene, which encodes a conserved protein showing orthologs in Archaea and eukaryotes. The Shwachman-Bodian-Diamond syndrome pleiotropic phenotypes may be an indication of different cell type requirements for a fully functional SBDS protein. RNA-binding activity has been predicted for archaeal and yeast SBDS orthologs, with the latter also being implicated in ribosome biogenesis. However, full-length SBDS orthologs function in a species-specific manner, indicating that the knowledge obtained from model systems may be of limited use in understanding major unresolved issues regarding SBDS function, namely, the effect of mutations in human SBDS on its biochemical function and the specificity of RNA interaction. We determined the solution structure and backbone dynamics of the human SBDS protein and describe its RNA binding site using NMR spectroscopy. Similarly to the crystal structures of Archaea, the overall structure of human SBDS comprises three well-folded domains. However, significant conformational exchange was observed in NMR dynamics experiments for the flexible linker between the N-terminal domain and the central domain, and these experiments also reflect the relative motions of the domains. RNA titrations monitored by heteronuclear correlation experiments and chemical shift mapping analysis identified a classic RNA binding site at the N-terminal FYSH (fungal, Yhr087wp, Shwachman) domain that concentrates most of the mutations described for the human SBDS. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have evaluated RECK (reversion-inducing-cysteine-rich protein with Kazal motifs), MMP-2 (matrix metalloproteinase-2), MMP-3, and MMP-9 involvement during palate development in mice by using various techniques. Immunohistochemical features revealed the distribution of RECK, MMP-2, and MMP-3 in the mesenchymal tissue and in the midline epithelial seam at embryonic day 13 (E13), MMPs-2, -3, and -9 being particularly expressed at E14 and E14.5. In contrast, RECK was weakly immunostained at these times. Involvement of MMPs was validated by measuring not only their protein expression, but also their activity (zymograms). In situ hybridization signal (ISH) for RECK transcript was distributed in mesenchymal and epithelial regions within palatal shelves at all periods evaluated. Importantly, the results from ISH analysis were in accord with those obtained by real-time polymerase chain reaction. The expression of RECK was found to be temporally regulated, which suggested possible roles in palatal ontogeny. Taken together, our results clearly show that remodeling of the extracellular matrix is finely modulated during secondary palate development and occurs in a sequential manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Upon searching for glucocorticoid-regulated cDNA sequences associated with the transformed to normal phenotypic reversion of C6/ST1 rat glioma cells, we identified Nrp/b (nuclear restrict protein in brain) as a novel rat gene. Here we report on the identification and functional characterization of the complete sequence encoding the rat NRP/B protein. The cloned cDNA presented a 1767 nucleotides open-reading frame encoding a 589 aminoacids residues sequence containing a BTB/POZ (broad complex Tramtrack bric-a-brac/Pox virus and zinc finger) domain in its N-terminal region and kelch motifs in its C-terminal region. Sequence analysis indicates that the rat Nrp/b displays a high level of identity with the equivalent gene orthologs from other organisms. Among rat tissues, Nrp/b expression is more pronounced in brain tissue. We show that overexpression of the Nrp/b cDNA in C6/ST1 cells suppresses anchorage independence in vitro and tumorigenicity in vivo, altering their malignant nature towards a more benign phenotype. Therefore, Nrp/b may be postulated as a novel tumor suppressorgene, with possible relevance for glioblastoma therapy. (C) 2009 Elsevier Ltd. All rights reserved.