218 resultados para Molybdenum ions
Resumo:
The progressive degradation of resin-dentin bonds is due, in part, to the slow degradation of collagen fibrils in the hybrid layer by endogenous matrix metalloproteinases (MMPs) of the dentin matrix. In in vitro durability studies, the storage medium composition might be important because the optimum activity of MMPs requires both zinc and calcium. Objective. This study evaluated the effect of different storage media on changes in matrix stiffness, loss of dry weight or solubilization of collagen from demineralized dentin beams incubated in vitro for up to 60 days. Methods. Dentin beams (1 mm x 2 mm x 6 mm) were completely demineralized in 10% phosphoric acid. After baseline measurements of dry mass and elastic modulus (E) (3-point bending, 15% strain) the beams were divided into 5 groups (n = 11/group) and incubated at 37 degrees C in either media containing both zinc and calcium designated as complete medium (CM), calcium-free medium, zinc-free medium, a doubled-zinc medium or water. Beams were retested at 3, 7, 14, 30, and 60 days of incubation. The incubation media was hydrolyzed with HCl for the quantitation of hydroxyproline (HOP) as an index of solubilization of collagen by MMPs. Data were analyzed using repeated measures of ANOVA. Results. Both the storage medium and the storage time showed significant effects on E, mass loss and HOP release (p < 0.05). The incubation in CM resulted in relatively rapid and significant (p < 0.05) decreases in stiffness, and increasing amounts of mass loss. The HOP content of the experimental media also increased with incubation time but was significantly lower (p < 0.05) than in the control CM medium, the recommended storage medium. Conclusions. The storage solutions used to age resin-dentin bonds should be buffered solutions that contain both calcium and zinc. The common use of water as an aging medium may underestimate the hydrolytic activity of endogenous dentin MMPs. (c) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Aim. The aim of this study was to evaluate the concentration of calcium ions and smear layer removal by using root canal chelators according to flame atomic absorption spectrophotometry and scanning electron microscopy. Forty-two human maxillary central incisors were irrigated with 15% ethylenediaminetetraacetic acid (EDTA), 10% citric acid, 10% sodium citrate, apple vinegar, 5% acetic acid, 5% malic acid, and sodium hypochlorite. The concentration of calcium ions was measured by using flame atomic absorption spectrometry, and smear layer removal was determined by scanning electron microscopy. Mean +/- standard deviation, one-way analysis of variance, Tukey-Kramer, Kruskal-Wallis, Dunn, and kappa tests were used for statistical analysis. The use of 15% EDTA resulted in the greatest concentration of calcium ions followed by 10% citric acid; 15% EDTA and 10% citric acid were the most efficient solutions for removal of smear layer. (J Endod 2009;35:727-730)
Resumo:
In this paper, we propose a new method of measuring the very slow paramagnetic ion diffusion coefficient using a commercial high-resolution spectrometer. If there are distinct paramagnetic ions influencing the hydrogen nuclear magnetic relaxation time differently, their diffusion coefficients can be measured separately. A cylindrical phantom filled with Fricke xylenol gel solution and irradiated with gamma rays was used to validate the method. The Fricke xylenol gel solution was prepared with 270 Bloom porcine gelatin, the phantom was irradiated with gamma rays originated from a (60)Co source and a high-resolution 200 MHz nuclear magnetic resonance (NMR) spectrometer was used to obtain the phantom (1)H profile in the presence of a linear magnetic field gradient. By observing the temporal evolution of the phantom NMR profile, an apparent ferric ion diffusion coefficient of 0.50 mu m(2)/ms due to ferric ions diffusion was obtained. In any medical process where the ionizing radiation is used, the dose planning and the dose delivery are the key elements for the patient safety and success of treatment. These points become even more important in modern conformal radio therapy techniques, such as stereotactic radiosurgery, where the delivered dose in a single session of treatment can be an order of magnitude higher than the regular doses of radiotherapy. Several methods have been proposed to obtain the three-dimensional (3-D) dose distribution. Recently, we proposed an alternative method for the 3-D radiation dose mapping, where the ionizing radiation modifies the local relative concentration of Fe(2+)/Fe(3+) in a phantom containing Fricke gel and this variation is associated to the MR image intensity. The smearing of the intensity gradient is proportional to the diffusion coefficient of the Fe(3+) and Fe(2+) in the phantom. There are several methods for measurement of the ionic diffusion using NMR, however, they are applicable when the diffusion is not very slow.
Resumo:
The metastable phase diagram of the BCC-based ordering equilibria in the Fe-Al-Mo system has been calculated via a truncated cluster expansion, through the combination of Full-Potential-Linear augmented Plane Wave (FP-LAPW) electronic structure calculations and of Cluster Variation Method (CVM) thermodynamic calculations in the irregular tetrahedron approximation. Four isothermal sections at 1750 K, 2000 K, 2250 K and 2500 K are calculated and correlated with recently published experimental data on the system. The results confirm that the critical temperature for the order-disorder equilibrium between Fe(3)Al-D0(3) and FeAl-B2 is increased by Mo additions, while the critical temperature for the FeAl-B2/A2 equilibrium is kept approximately invariant with increasing Mo contents. The stabilization of the Al-rich A2 phase in equilibrium with overstoichiometric B2-(Fe,Mo)Al is also consistent with the attribution of the A2 structure to the tau(2) phase, stable at high temperatures in overstoichiometric B2-FeAl. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this work we report results on the influence of heavy rare earth ions substitution on microstructure and magnetism of nanocrystalline magnetite. A series of Fe(2.85)RE(0.15)O(4) (RE = Gd, Dy, Ho, Tm and Yb) samples have been prepared by high energy ball milling. Structure/microstructure investigations of two selected samples Fe(2.85)Gd(0.15)O(4) and Fe(2.85)Tm(0.15)O(4), represent an extension of the previously published results on Fe(3)O(4)/gamma-Fe(2)O(3), Fe(2.85)Y(0.15)O(4) and Fe(2.55)In(0.45)O(4) [Z. Cvejic, S. Rakic, A. Kremenovic, B. Antic, C. Jovalekic. Ph. Colomban, Sol. State Sciences 8 (2006) 908], while magnetic characterization has been done for all the samples. Crystallite/particle size and strain determined by X-ray diffractometry and Transmission electron microscopy (TEM) confirmed the nanostructured nature of the mechanosynthesized materials. X-ray powder diffraction was used to analyze anisotropic line broadening effects through the Rietveld method. The size anisotropy was found to be small while strain anisotropy was large, indicating nonuniform distribution of deffects in the presence of Gd and Tm in the crystal structure. Superparamagnetic(SPM) behavior at room temperature was observed for all samples studied. The Y-substituted Fe(3)O(4) had the largest He and the lowest M(S). We discuss the changes in magnetic properties in relation to their magnetic anisotropy and microstructure. High field irreversibility (H>20kOe) in ZFC/FC magnetization versus temperature indicates the existence of high magnetocrystalline and/or strain induced anisotropy. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In the present work, the trivalent and hexavalent chromium phytoaccumulation by three living free floating aquatic macrophytes Salvinia auriculata, Pistia stratiotes, and Eicchornia crassipes was investigated in greenhouse. These plants were grown in hydroponic solutions supplied with non-toxic Cr3+ and Cr6+ chromium concentrations, performing six collections of nutrient media and plants in time from a batch system. The total chromium concentrations into Cr-doped hydroponic media and dry roots and aerial parts were assayed, by using the Synchrotron radiation X-ray fluorescence technique. The aquatic plant-based chromium removal data were described by using a nonstructural kinetic model, obtaining different bioaccumulation rate, ranging from 0.015 to 0.837 1 mg(-1) d(-1). The Cr3+ removal efficiency was about 90%, 50%, and 90% for the E. crassipes, P. stratiotes, and S. auriculata, respectively; while it was rather different for Cr6+ one, with values about 50%, 70%, and 90% for the E. crassipes, P. stratiotes, and S. auriculata.
Resumo:
This paper presents a study of AISI 1040 steel corrosion in aqueous electrolyte of acetic acid buffer containing 3.1 and 31 x 10(-3) mol dm(-3) of Na(2)S in both the presence and absence of 3.5 wt.% NaCl. This investigation of steel corrosion was carried out using potential polarization, and open-circuit and in situ optical microscopy. The morphological analysis and classification of types of surface corrosion damage by digital image processing reveals grain boundary corrosion and shows a non-uniform sulfide film growth, which occurs preferentially over pearlitic grains through successive formation and dissolution of the film. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This work reports the structural and spectroscopy characterization of poly(styrene sulfonate) (PSS) films doped with neodymium (Nd) ions. Nd-PSS films were processed using the acid of poly(styrene sulfonate) - H-PSS and neodymium nitrate - Nd(NO(3))(3); the maximum incorporation of Nd ions in the polymeric matrix was equal 19.3%. The absorption in the UV-Vis-NIR spectral region presents typical electronic transitions of Nd 3, ions, with well resolved peaks. The infrared spectra present the transition bands of PSS with characteristic line shape broadening, and the presence of vibrational modes of N-O groups in the range of 1400-720 cm(-1), prove the permanence of Nd(NO(3))(x), with x = 1, 2 and/or 3. in the H-PSS matrix. UV-Vis site selective photoluminescence data indicate that the incorporation of Nd 31 introduces a blue shift in PSS emission (325-800 nm), decreasing the interaction between adjacent PSS lateral groups (aromatic rings). Nd(3+) reabsorption and energy transfer effects between the PSS matrix and Nd(3+) were also observed. The IR emission of Nd-PSS films at 1076 rim ((4)F(3/2) -> (4)I(11/2)) present constant efficiency, independent on Nd(3+) concentration. The Judd-Ofelt theory was employed to analyze radiative properties. The excitation spectra prove the energy transfer between the polymeric matrix and Nd(3+). Complex impedance data was used to probe relaxation processes during the charge transport within the polymeric matrix. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Universal properties of the Coulomb interaction energy apply to all many-electron systems. Bounds on the exchange-correlation energy, in particular, are important for the construction of improved density functionals. Here we investigate one such universal property-the Lieb-Oxford lower bound-for ionic and molecular systems. In recent work [J Chem Phys 127, 054106 (2007)], we observed that for atoms and electron liquids this bound may be substantially tightened. Calculations for a few ions and molecules suggested the same tendency, but were not conclusive due to the small number of systems considered. Here we extend that analysis to many different families of ions and molecules, and find that for these, too, the bound can be empirically tightened by a similar margin as for atoms and electron liquids. Tightening the Lieb-Oxford bound will have consequences for the performance of various approximate exchange-correlation functionals. (C) 2008 Wiley Periodicals Inc.
Resumo:
Tropomyosin (Tm) is a dimeric coiled-coil protein that polymerizes through head-to-tail interactions. These polymers bind along actin filaments and play an important role in the regulation of muscle contraction. Analysis of its primary structure shows that Tm is rich in acidic residues, which are clustered along the molecule and may from sites for divalent cation binding. In a previous study, we showed that the Mg(2+)-induced increase in stability of the C-terminal half of Tin is sensitive to imitations near the C-terminus. In the present report, we study the interaction between Mg(2+) and full-length Tin and smaller fragments corresponding to the last 65 and 26 Tin residues. Although the smaller Tin peptide (Tm(259-284(W269))) is flexible and to large extent unstructured, the larger Tm(220-284(W269)) fragments forms a coiled coil in solution whose stability increases significantly in the presence of Mg(2+). NMR analysis shows thin Mg(2+) induces chemical shift perturbations in both Tm(220-284(W269)) and Tm(259-284(W269)) in the vicinity of His276, in which are located several negatively charged residues. (C) 2009 Wiley Periodicals, Inc. Biopolymers 91: 583-590, 2009.
Preparation of C-terminal modified peptides through alcoholysis and thiolysis mediated by metal ions
Resumo:
The diazocarbene radical, CNN, and the ions CNN(+) and CNN(-) were investigated at a high level of theory. Very accurate structural parameters for the states X(3)Sigma(-) and A(3)Pi of CNN, and X(2)Pi of both CNN(+) and CNN(-) were obtained with the UCCSD(T) method using correlated-consistent basis functions with extrapolations to the complete basis set limit, with valence only and also with all electrons correlated. Harmonic and anharmonic frequencies were obtained for all species and the Renner parameter and average frequencies evaluated for the Pi states. At the UCCSD(T)/CBS(T-5) level of theory, Delta(f)H(0 K) = 138.89 kcal/mol and Delta(f)H(298 K) = 139.65 kcal/mol were obtained for diazocarbene; for the ionization potential and the electron affinity of CNN, 10.969 eV (252.95 kcal/mol), and 1.743 eV (40.19 kcal/mol), respectively, are predicted. Geometry optimization was also carried out with the CASSCF/MRCI/CBS(T-5) approach for the states X(3)Sigma(-) A(3)Pi, and a(1)Delta of CNN, and with the CASSCF/MRSDCI/aug-cc-pVTZ approach for the states b(1)Sigma(+), c(1)Pi, d(1)Sigma(-), and B(3)Sigma(-), and excitation energies (T(e)) evaluated. Vertical energies were calculated for 15 electronic states, thus improving on the accuracy of the five transitions already described, and allowing for a reliable overview of a manifold of other states, which is expected to guide future spectroscopic experiments. This study corroborates the experimental assignment for the vertical transition X (3)Sigma(-) <- E (3)Pi.
Spectroscopic investigation of the interactions between emeraldine base polyaniline and Eu(III) ions
Resumo:
The interactions of emeraldine base form of polyaniline (EB-PANI) and Eu(III) ions in 1-methyl-2-pyrrolidinone (NMP) solution and in films have been investigated by UV-vis-NIR, resonance Raman. luminescence and electron paramagnetic resonance (EPR) spectroscopies. These spectroscopic techniques allowed to characterize quinone and semiquinone segments in the polymeric chains. and the oxidation state of europium ions in Eu-PANI samples. For high values of Eu(III)/N molar ratio (24/1) the presence of a weak polaronic absorption band at 980 nm in UV-vis-NIR spectrum and the observation of bands at 1330 and 1378 (nu(center dot)(C-N+)) cm(-1) due to emeraldine salt in the Raman spectrum at 1064 nm indicate a low doping degree. Oxidation of EB-PANI to pernigraniline base (PB-PANI) occurs in diluted solutions. The experimental data showed that the solvent plays an important role on the nature of formed species. The narrow EPR signal at g = 2.006 (line width 8G) confirms the presence of PANI radical cations in Eu-PANI film. The absence of broad signal characteristic of Eu(II) in EPR spectrum suggested that europium ions are primarily at Eu(III) oxidation state. The luminescence spectra of Eu-PANI film presented emission bands at 405 and 418 nm assigned to PANI moieties and bands at 594,615 and 701 nm assigned to (5)D(0) -> (7)F(J) (J = 1, 2 and 4, respectively) transitions of Eu(III). EPR and photoluminescence data confirm that europium ions are mainly in Eu(III) oxidation state in Eu(III)/PANI films. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The stereoselective nucleophilic addition of potassium alkyltrifluoroborates to cyclic N-acyliminium ions derived from N-benzyl-3,4,5-triacetoxy-pyrrolidin-2-one, which affords 5-substituted-pyrrolidin-2-ones, is described. The products are obtained in moderate to good yields and are produced predominantly as the anti diastereomer.
Resumo:
Trimercaptotriazine-modified gold nanoparticles exhibit strong SERS effects,(1) yielding vibrational profiles very sensitive to the presence of heavy metal ions. Because of the contrasting response observed for selected vibrational bands in the SERS profiles, they provide useful nanoprobes for Hg2+ and Cd2+ ions, allowing direct quantitative assays by employing relative peak intensity ratios instead of using internal standards.