36 resultados para Migration and religion


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ticks are blood-feeding arthropods that secrete immunomodulatory molecules through their saliva to antagonize host inflammatory and immune responses. As dendritic cells (DCs) play a major role in host immune responses, we studied the effects of Rhipicephalus sanguineus tick saliva on DC migration and function. Bone marrow-derived immature DCs pre-exposed to tick saliva showed reduced migration towards macrophage inflammatory protein (MIP)-1 alpha, MIP-1 beta and regulated upon activation, normal T cell expressed and secreted (RANTES) chemokines in a Boyden microchamber assay. This inhibition was mediated by saliva which significantly reduced the percentage and the average cell-surface expression of CC chemokine receptor CCR5. In contrast, saliva did not alter migration of DCs towards MIP-3 beta, not even if the cells were induced for maturation. Next, we evaluated the effect of tick saliva on the activity of chemokines related to DC migration and showed that tick saliva per se inhibits the chemotactic function of MIP-1 alpha, while it did not affect RANTES, MIP-1 beta and MIP-3 beta. These data suggest that saliva possibly reduces immature DC migration, while mature DC chemotaxis remains unaffected. In support of this, we have analyzed the percentage of DCs on mice 48 h after intradermal inoculation with saliva and found that the DC turnover in the skin was reduced compared with controls. Finally, to test the biological activity of the saliva-exposed DCs, we transferred DCs pre-cultured with saliva and loaded with the keyhole limpet haemocyanin (KLH) antigen to mice and measured their capacity to induce specific T cell cytokines. Data showed that saliva reduced the synthesis of both T helper (Th)1 and Th2 cytokines, suggesting the induction of a non-polarised T cell response. These findings propose that the inhibition of DCs migratory ability and function may be a relevant mechanism used by ticks to subvert the immune response of the host. (c) 2007 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Neospora caninum, the causative agent of neosporosis, is an obligate intracellular parasite considered to be a major cause of abortion in cattle throughout the world. Most studies concerning N. caninum have focused on life cycle, seroepidemiology, pathology and vaccination, while data on host-parasite interaction, such as host cell migration, mechanisms of evasion and dissemination of this parasite during the early phase of infection are still poorly understood. Here we show the ability of excreted/secreted antigens from N. caninum (NcESAs) to attract monocytic cells to the site of primary infection in both in vitro and in vivo assays. Molecules from the family of cyclophilins present on the NcESAs were shown to work as chemokine-like proteins and NcESA-induced chemoattraction involved G(i) protein signaling and participation of CC-chemokine receptor 5 (CCR5). Additionally, we demonstrate the ability of NcESAs to enhance the expression of CCR5 on monocytic cells and this increase occurred in parallel with the chemotactic activity of NcESAs by increasing cell migration. These results suggest that during the first days of infection, N. caninum produces molecules capable of inducing monocytic cell migration to the sites of infection, which will consequently enhance initial parasite invasion and proliferation. Altogether, these results help to clarify some key features involved in the process of cell migration and may reveal virulence factors and therapeutic targets to control neosporosis. (C) 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigated the effects of the dietary pigment chlorophyll b (CLb) on cisplatin (cDDP)-induced oxidative stress and DNA damage, using the comet assay in mouse peripheral blood cells and the micronucleus (MN) test in bone marrow and peripheral blood cells. We also tested for thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH) in liver and kidney tissues, as well as catalase (CAT) activity and GSH in total blood. CLb (0.2 and 0.5 mg/kg b.w.) was administrated by gavage every day for 13 days. On the 14th day of the experiment, 6 mg/kg cDDP or saline was delivered intraperitoneally. Treatment with cDDP led to a significant decrease in DNA migration and an increase in MN frequency in both cell types, bone marrow and peripheral blood cells. In the kidneys of mice treated with cDDP, TBARS levels were increased, whereas GSH levels were depleted in kidney and liver. In mice that were pretreated with CLb and then treated with cDDP, TBARS levels maintained normal concentrations and GSH did not differ from cDDP group. The improvement of oxidative stress biomarkers after CLb pre-treatment was associated with a decrease in DNA damage, mainly for the highest dose evaluated. Furthermore, CLb also slightly reduced the frequency of chromosomal breakage and micronucleus formation in mouse bone marrow and peripheral blood cells. These results show that pre-treatment with CLb attenuates cDDP-induced oxidative stress, chromosome instability, and lipid peroxidation. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Silybin (SB), a constituent of the medicinal plant Silybum marianum, is reported to be a potent hepatoprotective agent, but little is currently known regarding its genotoxicity, mutagenicity and potential chemopreventive properties. In this study, we evaluated the ability of SB to induce DNA migration and micronuclei (MN) formation in human hepatoma cells (HepG2). Also, possible preventive effects of SB on MN formation induced by three different mutagens, bleomycin (BLEO), benzo[a] pyrene (B[alpha] P) and aflatoxin B(1) (AFB(1)), were studied. To clarify the possible mechanism of SB antimutagenicity, three treatment protocols were applied: pretreatment, in which SB was added before the application of the mutagens; simultaneous treatment, in which SB was added during treatment and post-treatment, in which SB was added after the application of the mutagens. At concentrations up to 100 mu M, SB was non-genotoxic, while at a concentration of 200 mu M, SB induced DNA migration, generated oxidized DNA bases, reduced cell viability, decreased the replicative index of the cells and induced oxidative stress. It is noteworthy that SB was able to reduce the genotoxic effect induced by B[alpha] P, BLEO and AFB1 in pretreatment and simultaneous treatments but had no significant effect on DNA damage induction in post-treatment. Taken together, our findings indicate that SB presents anti-genotoxic activity in vitro, which suggests potential use as a chemopreventive agent.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction. Chronic allograft vasculopathy is an important cause of graft loss. Considering the inflammatory response in the development of chronic vascular lesions, therapeutic approaches to target the inflammatory process may be useful. We sought to investigate the possible protective effects on balloon catheter-induced vascular injury of thalidomide and tamoxifen, 2 drugs with powerful anti-inflammatory, immunomodulatory, and antifibrotic effects, using an animal model that mimics the morphologic features of chronic allograft vasculopathy. Methods. Male Wistar rats subjected to balloon catheter carotid injury (INJ) were treated with thalidomide (100 mg/kg), or tamoxifen (10 mg/kg), or vehicle. Contralateral right carotid arteries were used as uninjured controls. Morphometric and immunohistochemical analyses were performed at 14 days postinjury. Results. Injured carotid arteries showed marked neointimal hyperplasia, which was significantly inhibited among animals treated with thalidomide or tamoxifen: neointimal/media ratios of 1.4 +/- 0.4 versus 0.2 +/- 0.1 versus 0.4 +/- 0.2, for INJ, INJ + Thalid, and INJ + Tamox; respectively (P < .001). The endothelial cell loss was significantly less pronounced among animals subjected to carotid balloon injury that were treated with thalidomide (24 +/- 14 vs 1 +/- 1 cells per section in INJ, respectively (P < .05). Therapy with either thalidomide or tamoxifen effectively maintained alpha-smooth muscle actin expression in the media, similar to uninjured arteries. In this setting, tamoxifen was additionally effective to prevent the migration of myofibroblasts in to the intima. Conclusion. Thalidomide and tamoxifen were effective to reduce neointimal hyperplasia secondary to vascular damage. The vasculoprotective effects of thalidomide were more pronounced to preserve endothelial cells, whereas tamoxifen inhibited smooth muscle cell migration and proliferation. A possible beneficial effect of combined therapy with thalidomide plus tamoxifen should be addressed in future studies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The chemokine stromal-derived factor-1 alpha (SDF-1 alpha) and its receptor CXCR4 are critically involved in directional migration and homing of plasma cells in multiple myeloma. Here, we show that the expression of SDF-1 alpha and CXCR4 was significantly down-regulated in patients treated with thalidomide (n = 10) as compared to newly diagnosed MM patients (n = 31) and MM patients treated with other drugs (n = 38). SDF-1 alpha and CXCR4 expression was also significantly decreased in a RPMI 8226 cell line treated with 10 and 20 mu mol/L of thalidomide. Our findings indicate that thalidomide therapy induces down-regulation of CXCR4 and its ligand SDF-1 alpha in multiple myeloma. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Neutrophil migration is responsible for tissue damage observed in inflammatory diseases and is also implicated in inflammatory nociception. The use of lectins has been demonstrated to be effective in different activities including anti-inflammatory, antimicrobial, and in cancer therapy. In this study, we addressed the potential use of a lectin from Canavalia grandiflora seeds (ConGF) to control neutrophil migration and inflammatory hypernociception. Pretreatment of the animals intravenously (15 min before) with ConGF inhibited neutrophil migration to the peritoneal cavity in a dose-dependent fashion confirmed by an inhibition of rolling and adhesion of leukocytes by intravital microscopy. Another set of experiments showed that pretreatment of the animals with ConGF inhibited the mechanical hypernociception in mice induced by the i.pl. injection of carrageenan or formalin. This anti-nociceptive effect correlated with an effective blockade of neutrophil influx, as assessed by the hind paw tissue myeloperoxidase levels. Furthermore, ConGF had important inhibitory effects on the mouse carrageenan-induced paw edema. In addition, animals treated with ConGF showed inhibition of cytokines release. In conclusion, we demonstrated that the lectin ConGF inhibits neutrophil migration and mechanical inflammatory hypernociception.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the present study, we investigated whether saliva from Phlebotomus papatasi and Phlebotomus duboscqi inhibited antigen-induced neutrophil migration and the mechanisms involved in these effects. The pretreatment of immunized mice with salivary gland extracts (SGE) of both phlebotomines inhibited OVA challenge-induced neutrophil migration and release of the neutrophil chemotactic mediators, MIP-1 alpha, TNF-alpha, and leukotriene B-4 (LTB4). Furthermore, SGE treatment enhanced the production of anti-inflammatory mediators, IL-10 and PGE(2). SGE treatments failed to inhibit neutrophil migration and MIP-1 alpha and LTB4 production in IL-10(-/-) mice, also failing in mice treated with nonselective (indomethacin) or selective (rofecoxibe) cyclooxygenase (COX) inhibitors. COX inhibition resulted in diminished SGE-induced IL-10 production, and PGE(2) release triggered by SGE remained increased in IL-10(-/-) mice, suggesting that prostanoids are acting through an IL-10-dependent mechanism. SGE treatments in vivo reduced the OVA-induced lymphoproliferation of spleen-derived cells. Further, the in vitro incubation of bone marrow-derived dendritic cells (DC) with SGE inhibited the proliferation of CD4(+) T cells from OVA-immunized mice, which was reversed by indomethacin and anti-IL-10 antibody treatments. Supporting these results, SGE induced the production of PGE(2) and IL-10 by DC, which were blocked by COX inhibition. These effects were associated with the reduction of DC-membrane expression of MHC-II and CD86 by SGE treatment. Altogether, the results showed that Phlebotomine saliva inhibits immune inflammation-induced neutrophil migration by an autocrine DC sequential production of PGE(2)/IL-10, suggesting that the saliva constituents might be promising therapeutic molecules to target immune inflammatory diseases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Inflammation is a pivotal component of a variety of diseases, such as atherosclerosis and tumour progression. Various naturally occurring phytochemicals exhibit anti-inflammatory activity and are considered to be potential drug candidates against inflammation-related pathological processes. Capsicum baccatum L. var. pendulum (Willd.) Eshbaugh (Solanaceae) is the most consumed species in Brazil, and its compounds, such as capsaicinoids, have been found to inhibit the inflammatory process. However, the anti-inflammatory effects of C. baccatum have not been characterized. Thus, this study was designed to evaluate the effects of C. baccatum juice in animal models of acute inflammation induced by carrageenan and immune inflammation induced by methylated bovine serum albumin. Pretreatment (30 min) of rats with pepper juice (0.25-2.0 g kg(-1)) significantly decreased leucocyte and neutrophil migration, exudate volume and protein and LDH concentration in pleural exudates of a pleurisy model. This juice also inhibited neutrophil migration and reduced the vascular permeability on carrageenan-induced peritonitis in mice. C. baccatum juice also reduced neutrophil recruitment and exudate levels of pro-inflammatory cytokines TNF-alpha, and IL-1 beta in mouse inflammatory immune peritonitis. Furthermore, we demonstrated that the main constituent of C. baccatum juice, as extracted with chloroform, is capsaicin. In agreement with this, capsaicin was able to inhibit the neutrophil migration towards the inflammatory focus. To our knowledge, this is the first demonstration of the anti-inflammatory effect of C. baccatum juice and our data suggest that this effect may be induced by capsaicin. Moreover, the anti-inflammatory effect induced by red pepper may be by inhibition of pro-inflammatory cytokine production at the inflammatory site.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Leukotriene B-4 (LTB4) mediates different inflammatory events such as neutrophil migration and pain. The present study addressed the mechanisms of LTB4-mediated joint inflammation-induced hypernociception. It was observed that zymosan-induced articular hypernociception and neutrophil migration were reduced dose-dependently by the pretreatment with MK886 (1-9 mg/kg; LT synthesis inhibitor) as well as in 5-lypoxygenase-deficient mice (5LO(-/-)) or by the selective antagonist of the LTB4 receptor (CP105696; 3 mg/kg). Histological analysis showed reduced zymosan-induced articular inflammatory damage in 5LO(-/-) mice. The hypernociceptive role of LTB4 was confirmed further by the demonstration that joint injection of LTB4 induces a dose (8.3, 25, and 75 ng)-dependent articular hypernociception. Furthermore, zymosan induced an increase in joint LTB4 production. Investigating the mechanism underlying LTB4 mediation of zymosan-induced hypernociception, LTB4-induced hypernociception was reduced by indomethacin (5 mg/kg), MK886 (3 mg/kg), celecoxib (10 mg/kg), antineutrophil antibody (100 mu g, two doses), and fucoidan (20 mg/kg) treatments as well as in 5LO(-/-) mice. The production of LTB4 induced by zymosan in the joint was reduced by the pretreatment with fucoidan or antineutrophil antibody as well as the production of PGE(2) induced by LTB4. Therefore, besides reinforcing the role of endogenous LTB4 as an important mediator of inflamed joint hypernociception, these results also suggested that the mechanism of LTB4-induced articular hypernociception depends on prostanoid and neutrophil recruitment. Furthermore, the results also demonstrated clearly that LTB4-induced hypernociception depends on the additional release of endogenous LTs. Concluding, targeting LTB4 synthesis/action might constitute useful therapeutic approaches to inhibit articular inflammatory hypernociception.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rationale Sepsis is a leading cause of death in the intensive care unit, characterized by a systemic inflammatory response (SIRS) and bacterial infection, which can often induce multiorgan damage and failure. Leukocyte recruitment, required to limit bacterial spread, depends on phosphoinositide-3 kinase gamma (PI3K gamma) signaling in vitro; however, the role of this enzyme in polymicrobial sepsis has remained unclear. Objectives: This study aimed to determine the specific role of the kinase activity of PI3K gamma in the pathogenesis of sepsis and multiorgan damage. Methods. PI3K gamma wild-type, knockout, and kinase-dead mice were exposed to cecal ligation and perforation induced sepsis and assessed for survival; pulmonary, hepatic, and cardiovascular damage; coagulation derangements; systemic inflammation; bacterial spread; and neutrophil recruitment. Additionally, wild-type mice were treated either before or after the onset of sepsis with a PI3K gamma inhibitor and assessed for survival, neutrophil recruitment, and bacterial spread. Measurements and Main Results: Both genetic and pharmaceutical PI3K gamma kinase inhibition significantly improved survival, reduced multiorgan damage, and limited bacterial decompartmentalization, while modestly affecting SIRS. Protection resulted from both neutrophil-independent mechanisms, involving improved cardiovascular function, and neutrophil-dependent mechanisms, through reduced susceptibility to neutrophil migration failure during severe sepsis by maintaining neutrophil surface expression of the chemokine receptor, CXCR2. Furthermore, PI3K gamma pharmacological inhibition significantly decreased mortality and improved neutrophil migration and bacterial control, even when administered during established septic shock. Conclusions: This study establishes PI3K gamma as a key molecule in the pathogenesis of septic infection and the transition from SIRS to organ damage and identifies it as a novel possible therapeutic target.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Previously, it was demonstrated that the heme/heme oxygenase (HO)/carbon monoxide (CO) pathway inhibits neutrophil recruitment during the inflammatory response. Herein, we addressed whether the inhibitory effect of the HO pathway on neutrophil adhesion and migration involves the reduction of intracellular adhesion molecule type (ICAM)-1 and beta(2)-integrin expression. Mice pretreated with a specific inhibitor of inducible HO (HO-1), zinc protoporphyrin (ZnPP) IX, exhibit enhanced neutrophil adhesion and migration induced by intraperitoneal injection of Escherichia coli lipopolysaccharide (LPS). These findings are associated with an increase in ICAM-1 expression on mesentery venular endothelium. In accordance, HO-1 inhibition did not enhance LPS-induced neutrophil migration and adhesion in ICAM-1-deficient mice. Furthermore, the treatment with a CO donor (dimanganese decacarbonyl, DMDC) that inhibits adhesion and migration of the neutrophils, reduced LPS-induced ICAM-1 expression. Moreover, neither DMDC nor ZnPP IX treatments changed LPS-induced beta(2)-integrin expression on neutrophils. The effect of CO on ICAM-1 expression seems to be dependent on soluble guanylate cyclase (sGC) activation, since 1H-(1,2,4)oxadiazolo (4,3-a)quinoxalin-1-one (sGC inhibitor) prevented the observed CO effects. Finally, it was observed that the nitric oxide (NO) anti-inflammatory effects on ICAM-1 expression appear to be indirectly mediated by HO-1 activation, since the inhibition of HO-1 prevented the inhibitory effect of the NO donor (S-nitroso-N-acetylpenicillamine) on LPS-induced ICAM-1 expression. Taken together, these results suggest that CO inhibits ICAM-1 expression on endothelium by a mechanism dependent on sGC activation. Thus, our findings identify the HO-1/CO/guanosine 3`5`-cyclic monophosphate pathway as a potential target for the development of novel pharmacotherapy to control neutrophil migration in inflammatory diseases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Integrins and vascular endothelial growth factor (VEGF) are crucially involved in interaction, proliferation, migration, and survival of the cells. However, there is no report in the literature about beta 1 integrin and VEGF expression in heterotopic brain tissue. The aim of this study was to assess beta 1 integrin and VEGF expression in experimental brain tissue heterotopia in the lung during both fetal and neonatal periods. Twenty-four pregnant female Swiss mice were used to induce brain tissue heterotopia on the 15th gestational day. Briefly, the brain of one fetus of each dam was extracted, disaggregated, and injected into the right hemithorax of siblings. Six of these fetuses with pulmonary brain tissue implantation were collected on the 18th gestational day (group E18) and six other on the eighth postnatal day (group P8). Immunohistochemistry of the fetal trunks showed implantation of glial fibrillary acidic protein- and neuronal nuclei-positive heterotopic brain tissue, which were also positive for beta 1 integrin and VEGF in both groups E18 and P8. These results indicate that brain tissue heterotopia during fetal and postnatal period is able to complete integration with the lung tissue as well as to induce vascular proliferation which are the necessary steps for a successful implantation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Angiogenesis has been shown as an important process in hematological malignancies. It consists in endothelial proliferation, migration, and tube formation following pro-angiogenic factors releasing, specially the vascular endothelial growth factor (VEGF), which angiogenic effect seems to be dependent on nitric oxide (NO). We examined the association among functional polymorphism in these two angiogenesis related genes: VEGF (-2578C>A, -1154G>A, and -634G>C) and NOS3 (-786T>C, intron 4 b>a, and Glu298Asp) with prognosis of childhood acute lymphoblastic leukemia (ALL). Methods: The genotypes were determined and haplotypes estimated in 105 ALL patients that were divided in 2 groups: high risk (HR) and low risk of relapse (LR) patients. In addition, event-free survival curves according to genotypes were assessed. Results: The group HR compared to the LR showed a higher frequency of the alleles -2578C and -634C and the haplotype CGC for VEGF (0.72 vs. 0.51, p<0.008; 0.47 vs. 0.26, p<0.008; and 42.1 vs. 14.5, p<0.006; respectively) and a lower frequency of the haplotype CbGlu (0.4 vs. 8.8, p<0.006), for NOS3. Conclusion: Polymorphisms of VEGF and NOS3 genes are associated with high risk of relapse, therefore may have a prognostic impact in childhood ALL. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Periodontal tissue engineering is a complex process requiring the regeneration of bone, cementum, and periodontal ligament (PDL). Since cementum regeneration is poorly understood, we used a dog model of dental pulpal necrosis and in vitro cellular wounding and mineralization assays to determine the mechanism of action of calcium hydroxide, Ca(OH)(2), in cementogenesis. Laser capture microdissection (LCM) followed by qRT-PCR were used to assay responses of periapical tissues to Ca(OH)(2) treatment. Additionally, viability, proliferation, migration, and mineralization responses of human mesenchymal PDL cells to Ca(OH)(2) were assayed. Finally, biochemical inhibitors and siRNA were used to investigate Ca(OH)(2)-mediated signaling in PDL cell differentiation. In vivo, Ca(OH)(2)-treated teeth formed a neocementum in a STRO-1- and cementum protein-1 (CEMP1)-positive cellular environment. LCM-harvested tissues adjacent to the neocementum exhibited higher mRNA levels for CEMP1, integrin-binding sialoprotein, and Runx2 than central PDL cells. In vitro, Ca(OH)(2) and CEMP1 promoted STRO-1-positive cell proliferation, migration, and wound closure. Ca(OH)(2) stimulated expression of the cementum-specific proteins CEMP1 and PTPLA/CAP in an ERK-dependent manner. Lastly, Ca(OH)(2) stimulated mineralization by CEMP1-positive cells. Blocking CEMP1 and ERK function abolished Ca(OH)(2)-induced mineralization, confirming a role for CEMP1 and ERK in the process. Ca(OH)(2) promotes cementogenesis and recruits STRO-1-positive mesenchymal PDL cells to undergo cementoblastic differentiation and mineralization via a CEMP1- and ERK-dependent pathway.