17 resultados para Metal-insulator (MI) phase transition
Resumo:
This work reports on magnetic measurements of the quasi-two-dimensional (quasi-2D) system Zn(1-x)Mn(x)In(2)Se(4), with 0.01 <= x <= 1.00. For x > 0.67, the quasi-2D system seems to develop a spin-glass behaviour. Evidence of a true phase transition phenomenon is provided by the steep increase of the nonlinear susceptibility chi(nl) when approaching T(C) from above. The static scaling of chi(nl) data yields critical exponents delta = 4.0 +/- 0.2, phi = 4.37 +/- 0.17 and TC = 3.4 +/- 0.1 K for the sample with x = 1.00 and similar values for the sample with x = 0.87. These critical exponents are in good agreement with values reported for other spin-glass systems with short-range interactions.
Resumo:
We study the threshold theta bootstrap percolation model on the homogeneous tree with degree b + 1, 2 <= theta <= b, and initial density p. It is known that there exists a nontrivial critical value for p, which we call p(f), such that a) for p > p(f), the final bootstrapped configuration is fully occupied for almost every initial configuration, and b) if p < p(f) , then for almost every initial configuration, the final bootstrapped configuration has density of occupied vertices less than 1. In this paper, we establish the existence of a distinct critical value for p, p(c), such that 0 < p(c) < p(f), with the following properties: 1) if p <= p(c), then for almost every initial configuration there is no infinite cluster of occupied vertices in the final bootstrapped configuration; 2) if p > p(c), then for almost every initial configuration there are infinite clusters of occupied vertices in the final bootstrapped configuration. Moreover, we show that 3) for p < p(c), the distribution of the occupied cluster size in the final bootstrapped configuration has an exponential tail; 4) at p = p(c), the expected occupied cluster size in the final bootstrapped configuration is infinite; 5) the probability of percolation of occupied vertices in the final bootstrapped configuration is continuous on [0, p(f)] and analytic on (p(c), p(f) ), admitting an analytic continuation from the right at p (c) and, only in the case theta = b, also from the left at p(f).