31 resultados para Materials Science, Composites
Resumo:
The objective of this work was to analyze mechanical, physical and thermal performance of roofing tiles produced with several formulations of cement-based matrices reinforced with sisal and eucalyptus fibers. The physical properties of the tiles were more influenced by the fiber content of the composite than by the type of reinforcement. The type of the fiber was the main variable for the achievement of the best results of mechanical properties. Exposure to tropical climate has caused a severe reduction in the mechanical properties of the composites. After approximately four months of age under external weathering the toughness of the vegetable fiber-cement fell to 53-68% of the initial toughness at 28 days of age. The thermal performance showed that roofing tiles reinforced with vegetable fiber are acceptable as substitutes of asbestos-cement sheets. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
In this paper an analytical solution of the temperature of an opaque material containing two overlapping and parallel subsurface cylinders, illuminated by a modulated light beam, is presented. The method is based on the expansion of plane and cylindrical thermal waves in series of Bessel and Hankel functions. This model is addressed to the study of heat propagation in composite materials with interconnection between inclusions, as is the case of inverse opals and fiber reinforced composites. Measurements on calibrated samples using lock-in infrared thermography confirm the validity of the model.
Resumo:
The hysteretic behavior of mechanically alloyed nanocomposites FeCo + MnO was studied at high temperatures. These composites present an unusual high and thermally stable coercivity, compared to FeCo milled at equal conditions. Coercivity enhancement was observed in hysteresis loops obtained between room temperature and 750 K. It is attributed to the isolation of the FeCo ferromagnetic particles by the paramagnetic MnO (T(N) = 120 K). The M(rev)(M(irr))(H) curves are clearly linear for the composite, indicating that coherent rotation is the reversal mechanism in these materials. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this work, a systematic study of SO2 molecules interacting with pristine and transition metal (TM) covered C-60 is presented by means of first principles calculations. It is observed that the SO2 molecule interacts weakly with the pristine C-60 fullerene, although the resulting interaction is largely increased when the C-60 structure is covered with Fe, Mn, or Ti atoms and the SO2 Molecules are bounded through the TM atoms. The number of bounded SO2 molecules per TM atoms, in addition to the elevated binding energies per molecules, allows us to conclude that such composites can be used as a template for efficient devices to remove SO2 molecules or, alternatively, as SO2 gas sensor.
Resumo:
The use of carbon nanotubes (CNTs) combined with other materials in nanostructured films has demonstrated their versatility in tailoring specific properties. In this study, we produced layer-by-layer (LbL) films of polyamidoamine-PAMAM-incorporating multiwalled carbon nanotubes (PAMAM-NT) alternated with nickel tetrasulfonated metallophthalocyanine (NiTsPc), in which the incorporation of CNTs enhanced the NiTsPc redox process and its electrocatalytic properties for detecting dopamine. Film growth was monitored by UV-vis spectroscopy, which pointed to an exponential growth of the multilayers, whose roughness increased with the number of bilayers according to atomic force microscopy (AFM) analysis. Strong interactions between -NH3+ terminal groups from PAMAM and -SO3- from NiTsPc were observed via infrared spectroscopy, while the micro-Raman spectra confirmed the adsorption of carbon nanotubes (CNTs) onto the LbL film containing NiTsPc. Cyclic voltammograms presented well-defined electroactivity with a redox pair at 0.86 and 0.87 V, reversibility, a charge-transfer controlled process, and high stability up to 100 cycles. The films were employed successfully in dopamine (DA) detection, with limits of detection and quantification of 10(-7) and 10(-6) mol L-1, respectively. Furthermore, films containing immobilized CNTs could distinguish between DA and its natural interferent, ascorbic acid (AA).
Resumo:
This work reports on a distinct experimental procedure conceived to closely approach the question of development of crystallization in lead oxyfluoroborate glasses in the presence of an electric field. After proposing earlier that this phenomenon should involve occurrence of redox-type electrochemical reactions occurring at the electrodes. it was in fact recently shown that a direct contact of the glasses with both the cathode and anode revealed essential, provided that crystallization did not develop when ions migration to these electrodes became frustrated. The present study demonstrates that. even in Pt,Ag/Glass/YSZ:PbF(2)/Ag,Pt-type electrochemical cells subjected to electric field action, where YSZ:PbF(2) represents composite-like mixtures (formed by Y(2)O(3)-doped ZrO(2) and PbF(2)) placed between the glass and anode. crystallization was observable in given cases. In summary, supported by (micro)structural and electrical characterizations, clear evidence is provided here that, besides Pb(2+) reduction at the cathode, crystallization really involves simultaneous F(-) oxidation at the anode, completing thus the whole redox electrochemical reaction so far postulated. In these cases, F(-) migration to the anode was achievable following PbF(2) percolative-like paths through the YSZ:PbF(2) mixtures. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Confined water, such as those molecules in nanolayers of 2-3 nm in length, plays an important role in the adhesion of hydrophilic materials, mainly in cementitious ones. In this study, the effects of water containing kosmotropic substances on adhesion, known for their ability of enhancing the hydrogen bond (H-bond) network of confined water, were evaluated using mechanical strength tests. Indeed, to link adhesion provided by water confined in nanolayers to a macro-response of the cementitious samples, such as the bending strength, requires the evaluation of local water H-bond network configuration in the presence of kosmotropes, considering their influences on the extent and the strength of H-bonds. Among the kosmotropes, trimethylamine and sucrose provided a 50% increase in bending strength compared to the reference samples, the latter just using water as an adhesive, whereas trehalose was responsible for reducing the bending strength to a value close to the samples without any adhesive. The results attained opened up perspectives regarding exploring the confined water behavior which naturally occurs throughout the hydration process in cement-based materials.
Resumo:
In this paper we consider evolutionary pressures that will influence materials education and its role in the present scenario of Globalization: Challenges, Opportunities and needs. The main evolutionary pressures are related to some major control variables: increase of global population, new emerging technologies such as nanotechnology, alternative energies related to climate change, multimedia convergence in global communications, health, hunger, economic asymmetries and violence. Of course, many other factors could be identified, but this paper considers these as an adequate minimum basis for strategic considerations related to current materials education planning for the 21st century. In conclusion, we propose an International Network Program for Materials Education Strategy, thinking globally but acting regionally.
Resumo:
In the present work, the surface of the Eu-BTC = [Eu(EMA)(H(2)O)(2)], [Eu(TLA)(H(2)O)(4)] and [Eu(TMA)(H(2)O)(6)] complexes (EMA = 1,2,3-benzenetricarboxylate, TLA = 1,2,4-benzenetricarboxylate and TMA = 1,3,5-benzenetricarboxylate) was modified using 3-aminopropyltriethoxysilane (APTES) by a new microwave assisted method that proved to be simple and efficient. According to our observations, the most efficient luminescence is the material based on APTES incorporating [Eu(TMA)(H(2)O)(6)] complexes, denoted as Eu-TMA-Si, shows the highest emission efficiency. Therefore, it is proposed as a promising material for molecular conjugation in clinical diagnosis. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Polycrystalline Eu(2+) and Dy(3+) doped barium aluminate materials, BaAl(2)O(4):Eu(2+),Dy(3+), were prepared with solid state reactions at temperatures between 700 and 1500 degrees C. The influence of the thermal treatments on the stability, homogeneity and structure as well as to the UV-excited and persistent luminescence of the materials was investigated by X-ray powder diffraction, SEM imaging and infrared spectroscopies as well as by steady state luminescence spectroscopy and persistent luminescence decay curves, respectively. The IR spectra of the materials prepared at 250, 700, and 1500 degrees C follow the formation of BaAl(2)O(4) composition whereas the X-ray powder diffraction of compounds revealed how the hexagonal structure was obtained. The morphology of the materials at high temperatures indicated important aggregation due to sintering. The luminescence decay of the quite narrow Eu(2+) band at ca. 500 nm shows the presence of persistent luminescence after UV irradiation. The dopant (Eu(2+)) and co-clopant (Dy(3+)) concentrations affect the crystallinity and luminescence properties of the materials. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The influence of molecular oxygen in the interactions of emeraldine base form of polyaniline (EB-PANI) with Fe(III) or Cu(II) ions in 1-methyl-2-pyrrolidinone (NMP) solutions has been investigated by UV-vis-NIR, resonance Raman and electron paramagnetic resonance (EPR) spectroscopies. Through the set of spectroscopic results it was possible to rationalize the role Of O(2) and to construct a scheme of preferential routes occurring in the interaction of EB-PANI with Fe(III) or Cu(II). Solutions of 4.0 mmol L(-1) EB-PANI with 0.8, 2.0 and 20 mmol L(-1) Fe(III) or Cu(II) ions in NMP were investigated and the main observed reactions were EB-PANI oxidation to pernigraniline (PB-PANI) and EB-PANI doping process by pseudo-protonation, or by a two-step redox process. In the presence Of O(2), PB-PANI is observed in all Fe(III)/EB solutions and EB-PANI doping only occurs in solutions with high Fe(III) concentrations through pseudo-protonation. On the other hand, emeraldine salt (ES-PANI) is formed in all Fe(III)/EB solutions under N(2) atmosphere and, in this case, doping occurs both by the pseudo-protonation and two-step redox mechanisms. In all Cu(II)/EB solutions PB-PANI is formed both in the presence and absence of O(2), and only for solutions with high Cu(II) concentrations doping process occurs in a very low degree. The most important result from EPR spectra was providing evidence for redox steps. The determined Cu(II) signal areas under oxygen are higher than under N(2) and, further. the initial metal proportions (1:2:20) are maintained in these spectra, indicating that Cu(I) formed are re-oxidized by O(2) and. so, Cu(II) ions are being recycled. Consistently, for the solutions prepared under nitrogen, the corresponding areas and proportions in the spectra are much lower, confirming that a partial reduction of Cu(II) ions actually occurs. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Curaua fibers were treated with ionized air to improve the fiber/phenolic matrix adhesion.The treatment with ionized air did not change the thermal stability of the fibers. The impact strength increased with increase in the fiber treatment time. SEM micrographs of the fibers showed that the ionized air treatment led to separation of the fiber bundles. Treatment for 12 h also caused a partial degradation of the fibers, which prompted the matrix to transfer the load to a poorer reinforcing agent during impact, thereby decreasing the impact strength of the related composite. The composites reinforced with fibers treated with ionized air absorbed less water than those reinforced with untreated fibers.
Resumo:
In the present study, films based on linter cellulose and chitosan were prepared using an aqueous solution of sodium hydroxide (NaOH)/thiourea as the solvent system. The dissolution process of cellulose and chitosan in NaOH/thiourea aqueous solution was followed by the partial chain depolymerization of both biopolymers, which facilitates their solubilization. Biobased films with different chitosan/cellulose ratios were then elaborated by a casting method and subsequent solvent evaporation. They were characterized by X-ray analysis, scanning electron microscopy (SEM), atomic force microscopy (AFM), thermal analysis, and tests related to tensile strength and biodegradation properties. The SEM images of the biofilms with 50/50 and 60/40 ratio of chitosan/cellulose showed surfaces more wrinkled than the others. The AFM images indicated that higher the content of chitosan in the biobased composite film, higher is the average roughness value. It was inferred through thermal analysis that the thermal stability was affected by the presence of chitosan in the films; the initial temperature of decomposition was shifted to lower levels in the presence of chitosan. Results from the tests for tensile strength indicated that the blending of cellulose and chitosan improved the mechanical properties of the films and that an increase in chitosan content led to production of films with higher tensile strength and percentage of elongation. The degradation study in a simulated soil showed that the higher the crystallinity, the lower is the biodegradation rate.
Resumo:
Thermoset phenolic composites reinforced with sisal fibers were prepared to optimize the cure step. In the present study, processing parameters such as pressure, temperature, and time interval were varied to control the vaporization of the water generated as a byproduct during the crosslinking reaction. These molecules can vaporize forming voids, which in turn affect the final material properties. The set of results on impact strength revealed that the application of higher pressure before the gel point of the phenolic matrix produced composites with better properties. The SEM images showed that the cure cycle corresponding to the application of higher values of molding pressure at the gel point of the phenolic resin led to the reduction of voids in the matrix. In addition, the increase in the molding pressure during the cure step increased the resin interdiffusion. Better filling of the fiber channels decreased the possibility of water molecules diffusing through the internal spaces of the fibers. These molecules then diffused mainly through the bulk of the thermoset matrix, which led to a decrease in the water diffusion coefficient (D) at all three temperatures (25, 55 and 70 degrees C) considered in the experiments. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The (bio)degradation of polyolefins can be accelerated by modifying the level of crystallinity or by incorporation of carbonyl groups by adding pro-oxidants to masterbatches or through exposure to ultraviolet irradiation. In this work we sought to improve the degradation of PP by adding cobalt, calcium or magnesium stearate to Ecoflex(R), PP or Ecoflex(R)/PP blends. The effect of the pro-oxidants on biodegradability was assessed by examining the mechanical properties and fluidity of the polymers. PP had higher values for tensile strength at break and Young`s modulus than Ecoflex(R), and the latter had little influence on the properties of PP in Ecoflex(R)/PP blends. However, the presence of pro-oxidants (except for calcium) reduced these properties. All of the pro-oxidants enhanced the fluidity of PP, a phenomenon that facilitated polymer degradation at high temperatures. (C) 2009 Elsevier Ltd. All rights reserved.