34 resultados para Marcha gait
Resumo:
Background. Foot deformities have been related to diabetic neuropathy progression but their influence on plantar distribution during dynamic tasks is not completely understood. The purpose of the present study was to investigate the influence of metatarsal head prominence and claw toes on regional plantar pressures during gait in patients with diabetic neuropathy Methods Seventy-one adults participated in this study categorized into three groups: a control group (CG, n = 32), patients with diabetic neuropathy without any foot deformities (DG, n = 20), and patients with diabetic neuropathy with metatarsal head prominence and/or claw toes (DMHG, n = 19). Plantar pressure variables (contact area, peak pressure, and maximum mean pressure) were evaluated during gait on rearfoot, midfoot, and forefoot using capacitive insoles (Pedar-X System, Novel Inc., Munich, Germany). A general linear model was applied to repeatedly measure and analyze variance relationships between groups and areas. Results. DMHG. presented larger contact areas at the forefoot and midfoot along with higher peak pressure at the rearfoot compared to the other two groups The DG showed higher mean pressure at the midfoot compared to:the other two groups. Conclusion. The coexistence of diabetic neuropathy and metatarsal head prominence in addition to claw toes, resulted in overloading the rearfoot and enhancing the contact area of forefoot and midfoot while walking. This plantar pressure distribution is a result of a different coordination pattern adopted in order to reduce plantar loads at the anterior parts of the foot that were structurally altered. Patients with diabetic neuropathy without any forefoot deformities presented a different plantar pressure distribution than patients with deformities suggesting that both neuropathy and structural foot alterations can influence foot rollover mechanisms.
Resumo:
The purpose of this study was to describe the patterns of pelvic rotational asymmetry in the transverse plane and identify the possible factors related to this problem. One thousand and forty-five patients with cerebral palsy (CP) and complete documentation in the gait laboratory were reviewed in a retrospective study. Pelvic asymmetry in the transverse plane was observed in 52.7% of the patients; and to identify the possible causes of pelvic retraction, clinical (Thomas test, popliteal angle, and gastrocnemius tightness) and dynamic parameters (mean rotation of the hip in stance, minimum hip flexion, minimum knee flexion, and peak ankle dorsiflexion) were evaluated. The association between these parameters and pelvic retraction was assessed statistically. The results showed that 75.7% of patients with asymmetric pattern of the pelvis had clinical diagnosis of diplegic spastic CP. Among the patients with asymmetrical CP, the most common pattern was pelvic retraction on the affected side. The relationship between pelvic retraction and internal hip rotation was stronger in patients with asymmetrical diplegic CP than in those with hemiplegic (P<0.001) or symmetrical diplegic CP (P=0.014). All of the patients exhibited a significant association among clinical parameters (Thomas test, popliteal angle, and gastrocnemius tightness) and pelvic retraction. In conclusion, pelvic retraction seems to be a multifactorial problem, and the etiology can change according to topographic classification, which must be taken into account during the decision-making process in patients with CP. J Pediatr Orthop B 18:320-324 (C) 2009 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
Background: The purpose of this study was to investigate the ankle range of motion during neuropathic gait and its influence on plantar pressure distribution in two phases during stance: at heel-strike and at push-off. Methods: Thirty-one adults participated in this study (control group, n = 16; diabetic neuropathic group, n = 15). Dynamic ankle range of motion (electrogoniometer) and plantar pressures (PEDAR-X system) were acquired synchronously during walking. Plantar pressures were evaluated at rearfoot. midfoot and forefoot during the two phases of stance. General linear model repeated measures analysis of variance was applied to investigate relationships between groups, areas and stance phases. Findings: Diabetic neuropathy patients walked using a smaller ankle range of motion in stance phase and smaller ankle flexion at heel-strike (P = 0.0005). Peak pressure and pressure-time integral values were higher in the diabetic group in the midfoot at push-off phase when compared to heel-strike phase. On the other hand, the control group showed similar values of peak pressure in midfoot during both stance phases. Interpretation: The ankle mobility reduction observed could be associated to altered plantar pressure distribution observed in neuropathic subjects. Results demonstrated that midfoot and forefoot play a different role in subjects with neuropathy by receiving higher loads at push-off phase that are probably due to smaller ankle flexion at stance phase. This may explain the higher loads in anterior areas of the foot observed in diabetic neuropathy subjects and confirm an inadequate foot rollover associated to the smaller ankle range of motion at the heel-strike phase. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This study was performed to check if recommendations based on three-dimensional gait analysis (3DGA) are associated with better postoperative outcomes in patients with cerebral palsy (CP). Thirty-eight patients who underwent orthopedic surgery and assessment at the Gait Analysis Laboratory were evaluated retrospectively. The patients were divided in four groups according to the agreement between the recommendations from gait analysis and the procedures actually carried out. Fifteen patients with diplegic spastic cerebral palsy and indication for orthopedic surgery to improve walking - and whose surgical intervention was postponed - were also included in the study as a control group. Fourteen gait parameters recorded before and after treatment, were included in the statistical analysis. No gait improvement was noted in the control group or inh patients on whom no procedures recommended by the gait exam were performed (agreement of 0%). In the other groups, agreements averaged 46.71%, 72.2%, and 100%, respectively. Improvement of gait parameters after treatment was observed in these groups, with more significant values directly related to increased agreement percentage. Therefore, in this study the patients whose treatment matched the recommendations from three-dimensional gait analysis showed a more significant improvement in walking. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Increases in muscular cross-sectional area (CSA) occur in quadriplegics after training, but the effects of neuromuscular electrical stimulation (NMES) along with training are unknown. Thus, we addressed two questions: (1) Does NMES during treadmill gait training increase the quadriceps CSA in complete quadriplegics?; and (2) Is treadmill gait training alone enough to observe an increase in CSA? Fifteen quadriplegics were divided into gait (n = 8) and control (n = 7) groups. The gait group performed training with NMES for 6 months twice a week for 20 minutes each time. After 6 months of traditional therapy, the control group received the same gait training protocol but without NMES for an additional 6 months. Axial images of the thigh were acquired at the beginning of the study, at 6 months (for both groups), and at 12 months for the control group to determine the average quadriceps CSA. After 6 months, there was an increase of CSA in the gait group (from 49.8 +/- A 9.4 cm(2) to 57.3 +/- A 10.3 cm(2)), but not in the control group (from 43.6 +/- A 7.6 cm(2) to 41.8 +/- A 8.4 cm(2)). After another 6 months of gait without NMES in the control group, the CSA did not change (from 41.8 +/- A 8.4 cm(2) to 41.7 +/- A 7.9 cm(2)). The increase in quadriceps CSA after gait training in patients with chronic complete quadriplegia appears associated with NMES.
Resumo:
O experimento foi conduzido na Estação Experimental da Embrapa, Bagé, Rio Grande do Sul, entre março de 2005 e fevereiro de 2006. O objetivo foi avaliar o comportamento materno-filial e o temperamento de ovelhas e cordeiros e relacioná-los com a sobrevivência dos cordeiros. Foram utilizadas 47 ovelhas da raça Corriedale, com peso médio de 52,1kg, e 45 ovelhas da raça Ideal, com peso médio de 49,5kg, em um delineamento inteiramente casualizado. O temperamento foi avaliado por meio dos testes: escore de comportamento materno (ECM), tempo de fuga, tipo de marcha e distância de fuga. As ovelhas da raça Corriedale apresentaram maiores valores no teste tipo de marcha que as ovelhas da raça Ideal. Os cordeiros da raça Corriedale eram os mais pesados e tinham maior índice de sobrevivência, quando comparados com os da raça Ideal. A raça não afetou o escore de comportamento materno. Ovelhas reativas (ECM=1), que fogem e não retornam aos seus cordeiros, se isolaram menos do rebanho antes do parto, protegeram menos suas crias, desmamaram-nas mais cedo e tiveram menor peso em relação às não-reativas. A reatividade das ovelhas prejudicou o cuidado materno com os cordeiros e essa característica deve ser considerada pelo setor produtivo.
Resumo:
Background: Rotational osteotomy is frequently indicated to correct excessive femoral anteversion in cerebral palsy patients. Angled blade plate is the standard fixation device used when performed in the proximal femur, but extensile exposure is required for plate accommodation. The authors developed a short locked intramedullary nail to be applied percutaneously in the fixation of femoral rotational osteotomies in children with cerebral palsy and evaluated its mechanical properties. Methods: The study was divided into three stages. In the first part, a prototype was designed and made based on radiographic measurements of the femoral medullary canal of ten-year-old patients. In the second, synthetic femoral models based on rapid-prototyping of 3D reconstructed images of patients with cerebral palsy were obtained and were employed to adjust the nail prototype to the morphological changes observed in this disease. In the third, rotational osteotomies were simulated using synthetic femoral models stabilized by the nail and by the AO-ASIF fixed-angle blade plate. Mechanical testing was done comparing both devices in bending-compression and torsion. Results: The authors observed proper adaptation of the nail to normal and morphologically altered femoral models, and during the simulated osteotomies. Stiffness in bending-compression was significantly higher in the group fixed by the plate (388.97 +/- 57.25 N/mm) than in that fixed by the nail (268.26 +/- 38.51 N/mm) as torsional relative stiffness was significantly higher in the group fixed by the plate (1.07 +/- 0.36 Nm/degrees) than by the nail (0.35 +/- 0.13 Nm/degrees). Conclusions: Although the device presented adequate design and dimension to fit into the pediatric femur, mechanical tests indicated that the nail was less stable than the blade plate in bending-compression and torsion. This may be a beneficial property, and it can be attributed to the more flexible fixation found in intramedullary devices.
Resumo:
Age-related changes in running kinematics have been reported in the literature using classical inferential statistics. However, this approach has been hampered by the increased number of biomechanical gait variables reported and subsequently the lack of differences presented in these studies. Data mining techniques have been applied in recent biomedical studies to solve this problem using a more general approach. In the present work, we re-analyzed lower extremity running kinematic data of 17 young and 17 elderly male runners using the Support Vector Machine (SVM) classification approach. In total, 31 kinematic variables were extracted to train the classification algorithm and test the generalized performance. The results revealed different accuracy rates across three different kernel methods adopted in the classifier, with the linear kernel performing the best. A subsequent forward feature selection algorithm demonstrated that with only six features, the linear kernel SVM achieved 100% classification performance rate, showing that these features provided powerful combined information to distinguish age groups. The results of the present work demonstrate potential in applying this approach to improve knowledge about the age-related differences in running gait biomechanics and encourages the use of the SVM in other clinical contexts. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The ability to transfer weight from one lower limb to the other is essential for the execution of daily life activities and little is known about how weight transfer during unconstrained natural standing is affected by age. This study examined the weight transfer ability of elderly individuals during unconstrained standing (for 30 mill) in comparison to young adults. The subjects (19 healthy elderly adults, range 65-80 years, and 19 healthy young adults, range 18-30 years) stood with each foot on a separate force plate and were allowed to change their posture freely at any time. The limits of stability and base of support width during standing, measures of mobility (using the timed up and go and the preferred walking speed tests), and fear of falling were also measured. In comparison to the young adults, during unconstrained standing the elderly adults produced four times fewer weight transfers of large amplitude (greater than,half of their body weight). The limits of stability and base of support width were significantly smaller for the elderly adults but there were no significant differences in the measures of mobility and in the fear of falling score compared to young adults. The observed significant age-related decrease in the use of weight transfer during unconstrained standing, despite any difference in the measured mobility of the subjects, suggests that this task reveals unnoticed and subtle differences in postural control, which may help to better understand age related impairments in balance that the elderly population experiences. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this study, we evaluated alternative technical markers for the motion analysis of the pelvic segment. Thirteen subjects walked eight times while tri-dimensional kinematics were recorded for one stride of each trial. Five marker sets were evaluated, and we compared the tilt, obliquity, and rotation angles of the pelvis segment: (1) standard: markers at the anterior and posterior superior iliac spines (ASIS and PSIS); (2) markers at the PSIS and at the hip joint centers, HJCs (estimated by a functional method and described with clusters of markers at the thighs); (3) markers at the PSIS and HJCs (estimated by a predictive method and described with clusters of markers at the thighs); (4) markers at the PSIS and HJCs (estimated by a predictive method and described with skin-mounted markers at the thighs based on the Helen-Hayes marker set); (5) markers at the PSIS and at the iliac spines. Concerning the pelvic angles, evaluation of the alternative technical marker sets evinced that all marker sets demonstrated similar precision across trials (about 1 degrees) but different accuracies (ranging from 1 degrees to 3 degrees) in comparison to the standard marker set. We suggest that all the investigated marker sets are reliable alternatives to the standard pelvic marker set. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Prolonged standing has been associated with the onset of low back pain symptoms in working populations. So far, it is unknown how individuals with chronic low back pain (CLBP) behave during prolonged unconstrained standing (PS). The aim of the present study was to analyze the control of posture by subjects with CLBP during PS in comparison to matched healthy adults. The center of pressure (COP) position of 12 CLBP subjects and 12 matched healthy controls was recorded in prolonged standing (30 min) and quiet stance tasks (60 s) on a force plate. The number and amplitude of COP patterns, the root mean square (RMS), speed, and frequency of COP sway were analyzed. Statistical analyses showed that CLBP subjects produced less Postural changes in the antero-posterior direction with decreased postural sway during the prolonged standing task in comparison to the healthy group. Only CLBP subjects were influenced by the prolonged standing task, as demonstrated by their increased COP RMS, COP speed and COP frequency in the quiet standing trial after the prolonged standing task in comparison to the pre-PS trial. The present study provides additional evidence that individuals with CLBP might have altered sensory-motor function. Their inability to generate responses similar to those of healthy subjects during prolonged standing may contribute to CLBP persistence or an increase risk of recurrent back pain episodes. Moreover, quantification of postural changes during prolonged standing could be useful to identify CLBP subjects prone to postural control deficits. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this study, we examined Spatial-temporal gait stride parameters, lower extremity joint angles, ground reaction forces (GRF) components, and electromyographic activation patterns of 10 healthy elderly individuals (70 +/- 6 years) walking in water and on land and compared them to a reference group of 10 younger adults (29 +/- 16 years). They all walked at self-selected comfortable speeds both on land and while immersed in water at the Xiphoid process level. Concerning the elderly individuals, the main significant differences observed were that they presented shorter stride length, slower speed, lower GRF values, higher horizontal impulses, smaller knee range of motion, lower ankle dorsiflexion, and more knee flexion at the stride`s initial contact in water than on land. Concerning the comparison between elderly individuals and adults, elderly individuals walked significantly slower on land than adults but both groups presented the same speed walking in water. In water, elderly individuals presented significantly shorter stride length, lower stride duration, and higher stance period duration than younger adults. That is, elderly individuals` adaptations to walking in water differ from those in the younger age group. This fact should be considered when prescribing rehabilitation or fitness programs for these populations. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
This study reports for the first time an estimation of the internal net joint forces and torques on adults` lower limbs and pelvis when walking in shallow water, taking into account the drag forces generated by the movement of their bodies in the water and the equivalent data when they walk on land. A force plate and a video camera were used to perform a two-dimensional gait analysis at the sagittal plane of 10 healthy young adults walking at comfortable speeds on land and in water at a chest-high level. We estimated the drag force on each body segment and the joint forces and torques at the ankle, knee, and hip of the right side of their bodies using inverse dynamics. The observed subjects` apparent weight in water was about 35% of their weight on land and they were about 2.7 times slower when walking in water. When the subjects walked in water compared with walking on land, there were no differences in the angular displacements but there was a significant reduction in the joint torques which was related to the water`s depth. The greatest reduction was observed for the ankle and then the knee and no reduction was observed for the hip. All joint powers were significantly reduced in water. The compressive and shear joint forces were on average about three times lower during walking in water than on land. These quantitative results substantiate the use of water as a safe environment for practicing low-impact exercises, particularly walking. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Background Falls are one of the greatest concerns among the elderly A number of studies have described peak torque as one of the best fall-related predictor. No studies have comprehensively focused on the rate of torque development of the lower limb muscles among elderly fallers. Then, the aim of this study was to determine the relationship between muscle peak torque and rate of torque development of the lower limb joints in elderly with and without fall history It was also aimed to determine whether these parameters of muscle performance (i e, peak torque and rate of torque development) are related to the number of falls. Methods: Thirty-one women volunteered to participate in the study and were assigned in one of the groups according to the number of falls over the 12 months that preceded the present Then, participants with no fall history (Cl; n = 13; 67.6[7.5] years-old), one fall (GII; n = 8, 66 0[4 91 years-old) and two or more falls (GIII, n = 10; 67.8[8.8] years-old) performed a number of lower limb maximal isometric voluntary contractions from which peak torque and rate of torque development were quantified Findings. Primary outcomes indicated no peak torque differences between experimental groups in any lower limb joint. The rate of torque development of the knee flexor muscles observed in the non-fallers (Cl) was greater than that observed in the fallers (P < 0.05) and had a significant relationship with the number of falls (P < 0 05) Interpretation. The greater knee flexor muscles` rate of torque development found in the non-fallers in comparison to the fallers indicated that the ability of the elderly to rapidly reorganise the arrangement of the lower limb may play a significant role in allowing the elderly to recover balance after a trip. Thus, training stimulus aimed to improve the rate of torque development may be more beneficial to prevent falls among the elderly than other training stimulus, which are not specifically designed to improve the ability to rapidly produce large amounts of torque (C) 2010 Published by Elsevier Ltd
Resumo:
In order to evaluate the effects of uncertainty about direction of mechanical perturbation and supra-postural task constraint on postural control young adults had their upright stance perturbed while holding a tray in a horizontal position Stance was perturbed by moving forward or backward a supporting platform contrasting situations of certainty versus uncertainty of direction of displacement Increased constraint on postural stability was Imposed by a supra-postural task of equilibrating a cylinder on the tray Performance was assessed through EMG of anterior leg muscles angular displacement of the main Joints involved in the postural reactions and displacement of the tray Results showed that both certainty on the direction of perturbation and Increased supra-postural task constraint led to decreased angular displacement of the knee and the hip Furthermore combination of certainty and high supra-postural task constraint produced shorter latency of muscular activation Such postural responses were paralleled by decreased displacement of the tray Thesi results suggest a functional integration between the tasks with central set priming reactive postural responses from contextual cues and Increased stability demand (C) 2010 Elsevier B V All rights reserved